Potential role of reactive oxygen species and antioxidant genes in the regulation of peach fruit development and ripening
文献类型: 外文期刊
作者: Huan, Chen 1 ; Jiang, Li 1 ; An, Xiujuan 1 ; Yu, Mingliang 2 ; Xu, Yin 1 ; Ma, Ruijuan 2 ; Yu, Zhifang 1 ;
作者机构: 1.Nanjing Agr Univ, Coll Food Sci & Technol, Nanjing 210095, Jiangsu, Peoples R China
2.Jiangsu Acad Agr Sci, Inst Hort, Nanjing 210095, Jiangsu, Peoples R China
关键词: Superoxide dismutase;Catalase;Glutathione peroxidase;Gene expression;Low temperature;Oxidative stress
期刊名称:PLANT PHYSIOLOGY AND BIOCHEMISTRY ( 影响因子:4.27; 五年影响因子:4.816 )
ISSN:
年卷期:
页码:
收录情况: SCI
摘要: The roles of reactive oxygen species (ROS) as both toxic by-products and as signaling molecules have been reported in fruit development and ripening. Superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) play important roles in balancing the induction and removal of ROS in plants, and are respectively encoded by families of closely homologous genes. In the present study, we investigated the roles of ROS and the above-mentioned antioxidant genes during the development and ripening of peach fruit. The experimental results indicated that O-2(-) and H2O2 acted as potential signaling molecules in the middle stage of fruit development, and only H2O2 might function as a main toxic molecule to stimulate lipid peroxidation and oxidative stress in the late stage of fruit ripening. PpaCu/Zn-SODs were the most abundant members in the PpaSOD gene family and they expressed steadily in peach fruit development and ripening. Low temperature (4 degrees C) postponed and suppressed the climacteric peaks of respiration and ethylene, significantly enhanced the activities of CAT and GPX, and up-regulated the expression of PpaCAT1 and PpaGPX6 in the late stage of fruit ripening. PpaCAT1 and PpaGPX6 were two key genes in alleviating oxidative stress in the late stage of fruit ripening. (C) 2016 Elsevier Masson SAS. All rights reserved.
- 相关文献
作者其他论文 更多>>
-
Effects of blooming and fruit thinning on the yield, fruit quality, and leaf photosynthesis of peach cultivar 'Xiahui 5' in China
作者:Zhang, Binbin;Chen, Hong;Zhang, Yuanyuan;Guo, Shaolei;Wang, Xiaojun;Sun, Meng;Yu, Mingliang;Ma, Ruijuan;Chen, Hong
关键词:Blossom and fruit thinning; fruit quality; fruit set; peach; photosynthesis; yield
-
Multi-omics analysis unravels chemical roadmap and genetic basis for peach fruit aroma improvement
作者:Cao, Xiangmei;Su, Yike;Cheng, Bo;Xie, Kaili;Klee, Harry;Chen, Kunsong;Zhang, Bo;Zhao, Ting;Guan, Xueying;Zhang, Yuanyuan;Yu, Mingliang;Zhang, Yuyan;Allan, Andrew;Zhang, Bo
关键词:
-
Effects of Different Mulching Practices on Soil Environment and Fruit Quality in Peach Orchards
作者:Guo, Lei;Wang, Falin;Liu, Siyu;Zhang, Peizhi;Hakeem, Abdul;Song, Hongfeng;Yu, Mingliang
关键词:peach orchards; living grass mulch; soil nutrients; microbial community; fruit quality
-
Genome-Wide Identification and Analysis of Plasma Membrane H+-ATPases Associated with Waterlogging in Prunus persica (L.) Batsch
作者:Zhang, Yuyan;Ma, Ruijuan;Yu, Mingliang;Xu, Jianlan;Guo, Shaolei;Zhang, Yuyan;Mao, Qinsi;Guo, Xin
关键词:peach; plasma membrane H+-ATPase family; genome-wide identification; waterlogging tolerance
-
Effects of paper pouches of different light transmittance on the phenolic synthesis and related gene expression in peach fruit
作者:Su, Ziwen;Yu, Mingliang;Su, Ziwen;Yan, Juan;Zhang, Binbin;Sun, Meng;Cai, Zhixiang;Shen, Zhijun;Ma, Ruijuan;Yu, Mingliang
关键词:Peach; Bagging; Light intensity; Phenolic compounds; Gene expression
-
Analysis of volatile compounds and metabolic mechanisms of stony hard peach after ethylene treatment
作者:Meng, Peiyu;Su, Ziwen;Yu, Mingliang;Shen, Zhijun;Zhang, Yuanyuan;Guo, Shaolei;Li, Shenge;Yu, Mingliang
关键词:Stony hard peach; Ethylene; Volatile compounds; Transcriptomic analysis
-
Effect of melatonin treatment on improving jasmonates content and cell wall stability involved in enhanced chilling tolerance of peach fruit during cold storage
作者:Li, Shenge;Ma, Ruijuan;Xu, Jianlan;Shen, Zhijun;Yu, Mingliang
关键词:Peach fruit; Chilling injury; Melatonin; Transcriptome analysis; Jasmonic acid signaling pathway