您好,欢迎访问江苏省农业科学院 机构知识库!

Role of Vfr in the regulation of antifungal compound production by Pseudomonas fluorescens FD6

文献类型: 外文期刊

作者: Zhang, Qingxia 1 ; Ji, Yanyan 1 ; Xiao, Qi 1 ; Chng, Soonie 2 ; Tong, Yunhui 1 ; Chen, Xijun 1 ; Liu, Fengquan 3 ;

作者机构: 1.Yangzhou Univ, Coll Plant Protect & Hort, Yangzhou 225009, Jiangsu, Peoples R China

2.Plant & Food Res Private Bag 4704, Christchurch 8140, New Zealand

3.Jiangsu Acad Agr Sci, Inst Plant Protect, Nanjing 210014, Jiangsu, Peoples R China

关键词: Vfr;Antifungal compound;Pseudomonas;Biocontrol

期刊名称:MICROBIOLOGICAL RESEARCH ( 影响因子:5.415; 五年影响因子:6.038 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Pseudomonas fluorescens FD6 has been shown to possess many beneficial traits involved in the biocontrol of fungal plant pathogens, such as Botrytis cinerea and Monilinia fructicola. Vfr (virulence factor regulator) a highly conserved global regulator of gram-negative bacteria, such as the human pathogen Pseudomonas aeruginosa, is required for the expression of many important virulence traits. The role of Vfr in the regulation of biocontrol traits, such as the production of antibiotics to control fungal pathogens by antagonistic bacteria, has not been elucidated. This study investigated the effect of a vfr mutant derived from P. fluorescens FD6 to better understand the regulation of some important biocontrol traits associated with the bacterium. Biochemical studies indicated that the production of the antibiotics 2,4-diacetylphloroglucinol, pyrrolnitrin and pyoluteorin, was markedly enhanced in the vfr mutant. The vfr mutation also increased biofilm production, swimming motility and the expression of exopolysaccharide-associated gene (pelA, pslA and pslB) transcripts, but reduced protease production. Wheat rhizosphere and root tip colonization by the vfr mutant was higher than that by the wild type at 7 and 21 days after inoculation. These findings demonstrate that Vfr modulates the expression of several key traits and the production of important antibiotics involved in the biocontrol potential of P. fluorescens FD6. (C) 2016 Elsevier GmbH. All rights reserved.

  • 相关文献

[1]Effect of retS gene on antibiotics production in Pseudomonas fluorescens FD6. Zhang, Qingxia,Xiao, Qi,Xu, Jingyou,Tong, Yunhui,Chen, Xijun,Wen, Jia,Wei, Lihui.

[2]The biocontrol effect of Sporidiobolus pararoseus Y16 against postharvest diseases in table grapes caused by Aspergillus niger and the possible mechanisms involved. Li, Qiaofei,Li, Chaolan,Zhang, Hongyin,Zhang, Xiaoyun,Zheng, Xiangfeng,Yang, Qiya,Apaliya, Maurice Tibiru,Boateng, Nana Adwoa Serwah,Sun, Yiwen,Li, Pengxia. 2017

[3]Enhancing bioefficacy of Bacillus subtilis with sodium bicarbonate for the control of ring rot in pear during storage. Liu, Youzhou,Wang, Kerong,Liu, Youzhou,Chen, Zhiyi,Liu, Yongfeng,Wang, Xiaoyu,Luo, Chuping,Nie, Yafeng. 2011

[4]Production of Antifungal p-Aminobenzoic Acid in Lysobacter antibioticus OH13. Laborda, Pedro,Zhao, Yangyang,Ling, Jun,Hou, Rongxian,Liu, Fengquan. 2018

[5]Novel Routes for Improving Biocontrol Activity of Bacillus Based Bioinoculants. Wu, Liming,Wu, Hui-Jun,Qiao, Junqing,Gao, Xuewen,Qiao, Junqing,Borriss, Rainer,Borriss, Rainer. 2015

[6]Isolation and lytic activity of the Listeria bacteriophage endolysin LysZ5 against Listeria monocytogenes in soya milk. Zhang, Hui,Bao, Hongduo,Wang, Ran,Billington, Craig,Hudson, J. Andrew. 2012

[7]Isolation and characterization of Bacillus altitudinis JSCX-1 as a new potential biocontrol agent against Phytophthora sojae in soybean [Glycine max (L.) Merr.]. Lu, Xiaoxue,Zhou, Dongmei,Chen, Xi,Zhang, Jinfeng,Huang, Huiwen,Wei, Lihui,Lu, Xiaoxue,Zhou, Dongmei,Chen, Xi,Zhang, Jinfeng,Huang, Huiwen,Wei, Lihui.

[8]Fengycin antibiotics isolated from B-FS01 culture inhibit the growth of Fusarium moniliforme Sheldon ATCC 38932. Hu, Liang Bin,Shi, Zhi Qi,Zhang, Ting,Yang, Zhi Min.

[9]Irrigating-continuous cropping with Bacillus subtilis D9 fortified waste water could control the Fusarium wilt of Artemisia selengens. Shao Hong-Bo,Chen Li-Hua,Han Rui,Zhang Huan,Xu Xiang-Hong,Wang Ming-Yue,Cheng Yao,Shao Xiao-Hou,Chen Li-Hua,Xu Xiang-Hong.

[10]Antifungal activity of Penicillium striatisporum Pst10 and its biocontrol effect on Phytophthora root rot of chilli pepper. Ma, Yan,Zhou, Ming-guo,Ma, Yan,Chang, Zhi-zhou,Zhao, Jiang-tao.

[11]Identification of a bacterium isolated from the diseased brown planthopper and determination of its insecticidal activity. Niu, Hongtao,Liu, Baosheng,Li, Yongteng,Guo, Huifang.

[12]Chryseobacterium nankingense sp nov WR21 effectively suppresses Ralstonia solanacearum growth via intensive root exudates competition. Wei, Zhong,Hu, Jie,Yang, Chunlan,Gu, Yi'an,Mei, Xinlan,Shen, Qirong,Xu, Yangchun,Huang, Jianfeng,Riaz, Kashif.

[13]Biocontrol of postharvest green mold of oranges by Hanseniaspora uvarum Y3 in combination with phosphatidylcholine. Li, Wanhai,Zhang, Hongyin,Apaliya, Maurice Tibiru,Yang, Qiya,Peng, Yaping,Zhang, Xiaoyun,Li, Pengxia.

作者其他论文 更多>>