您好,欢迎访问山西省农业科学院 机构知识库!

The impact of resistant and susceptible wheat cultivars on the multiplication of Heterodera filipjevi and H-avenae in parasite-infested soil

文献类型: 外文期刊

作者: Cui, L. 1 ; Sun, L. 1 ; Gao, X. 1 ; Song, W. 1 ; Wang, X. M. 1 ; Li, H. L. 4 ; Liu, Z. Y. 2 ; Tang, W. H. 5 ; Li, H. J. 1 ;

作者机构: 1.Chinese Acad Agr Sci, Inst Crop Sci, Natl Key Facil Crop Gene Resources & Genet Improv, Beijing 100081, Peoples R China

2.China Agr Univ, Dept Plant Genet & Breeding, Beijing 100193, Peoples R China

3.Shanxi Acad Agr Sci, Inst Crop Sci, Taiyuan 030031, Peoples R China

4.Henan Agr Univ, Coll Plant Protect, Zhengzhou 450002, Peoples R China

5.Ch

关键词: density;Heterodera avenae;Heterodera filipjevi;rhizospheric soil;wheat

期刊名称:PLANT PATHOLOGY ( 影响因子:2.59; 五年影响因子:2.924 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Cereal cyst nematode (CCN) severely threatens wheat production in many regions of China. Cultivars susceptible to CCN are the main reason for its spread. This study was initiated to determine whether wheat cultivars conferring different resistance levels are the dominant determinants of CCN populations in the rhizospheric soil. Field experiments were conducted at two locations in Henan province, China, where high populations of Heterodera filipjevi or H. avenae have occurred, during the growing seasons of 2010/11 and 2011/12. Conventional enumeration of white female nematodes on the plant roots, reproductive factor (Rf) and a molecular diagnostic approach, PreDicta B test, a soil testing service based on a sensitive quantitative PCR technique, were used to determine the nematode populations in the rhizospheric soils of seven common wheat and durum wheat cultivars with different reactions to CCN. The resistant responses to CCN conferred by durum wheat Wascana and Wakooma and common wheat Madsen were effective against both H. filipjevi and H. avenae and resulted in significantly fewer nematodes (<5 females) on the roots, and lower Rf. Those cultivars were effective in limiting nematode propagation, resulting in fewer CCN eggs in their rhizospheric soils. Taikong 6 conferred moderate resistance (5-10 females) to both Heterodera species. Tianmin 668 only showed resistance to H. avenae. Aikang 58 and Wenmai 19 were susceptible to both CCN species, which facilitated increases in the nematode populations. These results demonstrate that the reactions to CCN of wheat genotypes have obvious impact on the propagation of nematodes.

  • 相关文献

[1]An analysis of homoeologous microsatellites from Triticum urartu and Triticum monococcum. Bai, JR,Liu, KF,Jia, X,Wang, DW.

[2]Damage repair effect of He-Ne laser on wheat exposed to enhanced ultraviolet-B radiation. Sun, Yi,Yang, Liyan,Han, Rong,Sun, Yi.

[3]TEF-7A, a transcript elongation factor gene, influences yield-related traits in bread wheat (Triticum aestivum L.). Zheng, Jun,Liu, Hong,Wang, Yuquan,Zhang, Xueyong,Zheng, Jun,Liu, Hong,Wang, Yuquan,Zhang, Xueyong,Zheng, Jun,Liu, Hong,Wang, Yuquan,Wang, Lanfen,Chang, Xiaoping,Jing, Ruilian,Hao, Chenyang,Zhang, Xueyong,Zheng, Jun.

[4]Introduction of multi-alien chromatins carrying different powdery mildew-resistant genes from rye and Haynaldia villosa into wheat genome. Yuan, WY,Tomita, M,Sun, SC,Yasumuro, Y.

[5]Molecular Characterization, Gene Evolution, and Expression Analysis of the Fructose-1, 6-bisphosphate Aldolase (FBA) Gene Family in Wheat (Triticum aestivum L.). Lv, Geng-Yin,Guo, Xiao-Guang,Xie, Li-Ping,Xie, Chang-Gen,Zhang, Xiao-Hong,Yang, Yuan,Xiao, Lei,Tang, Yu-Ying,Guo, Ai-Guang,Xu, Hong,Xie, Chang-Gen,Guo, Ai-Guang,Xu, Hong,Pan, Xing-Lai. 2017

[6]A new stripe rust resistance gene transferred from Thinopyrum intermedium to hexaploid wheat (Triticum aestivum). Luo, Pei-Gao,Hu, Xue-Yun,Zhang, Min,Zhang, Huai-Qiong,Ren, Zheng-Long,Chang, Zhi-Jian. 2009

[7]Molecular Characterization of a New Wheat-Thinopyrum intermedium Translocation Line with Resistance to Powdery Mildew and Stripe Rust. Zhan, Haixian,Li, Guangrong,Pan, Zhihui,Yang, Zujun,Zhan, Haixian,Zhang, Xiaojun,Hu, Jin,Li, Xin,Qiao, Linyi,Guo, Huijuan,Chang, Zhijian,Jia, Juqing,Chang, Zhijian. 2015

[8]Protein characteristics of Chinese black-grained wheat. Li, WD,Beta, T,Sun, SC,Corke, H. 2006

[9]Characterization of a partial amphiploid between Triticum aestivum cv. Chinese Spring and Thinopyrum intermedium ssp trichophorum. Yang, ZJ,Li, GR,Chang, ZJ,Zhou, JP,Ren, ZL. 2006

[10]Effects of phenanthrene on seed germination and some physiological activities of wheat seedling. Wei, Haiying,Song, Shanjuan,Liu, Ting,Tian, Hongling. 2014

[11]DYNAMIC QTL ANALYSIS OF CHLOROPHYLL CONTENT DURING GRAIN FILLING STAGE IN WINTER WHEAT (TRITICUM AESTIVUM L.). Yang, Bin,Yan, Xue,Wang, Huiyan,Li, Xiaoyu,Ma, Haoxiang,Wang, Shuguang,Sun, Daizhen,Yang, Bin,Jing, Ruilian. 2016

[12]Gene Expression Profiles of Response to Water Stress at the Jointing Stage in Wheat. Shi Jun-feng,Mao Xin-guo,Jing Rui-lian,Pang Xiao-bin,Chang Xiao-ping,Shi Jun-feng,Shi Jun-feng,Wang Yu-guo. 2010

[13]TaWRKY71, a WRKY Transcription Factor from Wheat, Enhances Tolerance to Abiotic Stress in Transgenic Arabidopsis thaliana. Xu, Q.,Feng, W. J.,Peng, H. R.,Ni, Z. F.,Sun, Q. X.,Xu, Q.. 2014

[14]Comparative Proteomic Analysis of Wheat (Triticum aestivum L.) Hybrid Necrosis. Jiang Qi-yan,Hu Zheng,Zhang Hui,Pan Xing-lai. 2013

[15]Effects of variety, year of cultivation and sulphur supply on the accumulation of free asparagine in the grain of commercial wheat varieties. Curtis, Tanya Y.,Wang, Ruiyun,Halford, Nigel G.,Powers, Stephen J.,Wang, Ruiyun,Wang, Ruiyun. 2018

[16]Genetic basis of traits related to stomatal conductance in wheat cultivars in response to drought stress. Wang, S. G.,Jia, S. S.,Sun, D. Z.,Wang, H. Y.,Dong, F. F.,Ma, H. X.,Jing, R. L.,Ma, G..

[17]Study on the interaction between 3 flavonoid compounds and alpha-amylase by fluorescence spectroscopy and enzymatic kinetics. Li, Y.,Gao, F.,Gao, F.,Zhao, C.,Shan, F.,Bian, J..

[18]Evolution of the Aux/IAA Gene Family in Hexaploid Wheat. Qiao, Linyi,Qiao, Linyi,Zhang, Xiaojun,Li, Xin,Chang, Jianzhong,Zhan, Haixian,Guo, Huijuan,Zheng, Jun,Chang, Zhijian,Zhang, Li,Zhang, Lei.

[19]Development of NBS-related microsatellite (NRM) markers in hexaploid wheat. Qiao, Linyi,Qiao, Linyi,Zhang, Xiaojun,Li, Xin,Zheng, Jun,Chang, Zhijian,Zhang, Lei.

作者其他论文 更多>>