您好,欢迎访问江苏省农业科学院 机构知识库!

Balance between salt stress and endogenous hormones influence dry matter accumulation in Jerusalem artichoke

文献类型: 外文期刊

作者: Shao, Tianyun 1 ; Li, Lingling 1 ; Wu, Yawen 1 ; Chen, Manxia 1 ; Long, Xiaohua 1 ; Shao, Hongbo 2 ; Liu, Zhaopu 1 ; Reng 1 ;

作者机构: 1.Nanjing Agr Univ, Coll Resources & Environm Sci, Nanjing 210095, Jiangsu, Peoples R China

2.Chinese Acad Sci, Yantai Inst Coastal Zone Res, Yantai 264003, Peoples R China

3.Jiangsu Acad Agr Sci, Inst Agrobiotechnol, Nanjing 210014, Jiangsu, Peoples R China

4.Univ Western Australia, Soil Sci & Plant Nutr, Sch Earth & Environm, 35 Stirling Highway, Crawley, WA 6009, Australia

关键词: Jerusalem artichoke;Tuber;Dry matter;Endogenous phytohormones;Salt stress

期刊名称:SCIENCE OF THE TOTAL ENVIRONMENT ( 影响因子:7.963; 五年影响因子:7.842 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Salinity is one of the most serious environmental stresses limiting agricultural production. Production of Jerusalem artichoke on saline land is strategically important for using saline land resources. The interaction between plant hormones and salinity stress in governing Jerusalem artichoke (Helianthus tuberosus) growthisunclear. Jerusalem artichoke (variety Nanyu-1) was grown under variable salinity stress in the field, and a role of endogenous hormones [zeatin (ZT), auxins (IAA), gibberellins (GA(3)) and abscisic acid (ABA)] in regulating sugar and dry matter accumulation in tubers was characterized. Under mild salt stress (<= 2.2 g NaCl kg(-1) soil), Nanyu-1 grew well with no significant alteration of dry matter distribution to stems and tubers. In contrast, under moderate salt stress (2.7 g NaCl kg(-1) soil), the distribution to stem decreased and to tubers decreased significantly. Mild salt stress induced sugar accumulation in tubers at the beginning of the tuber-expansion period, but significantly inhibited (i) transfer of non-reducing sugars to tubers, and (ii) polymerization and accumulation of fructan during the tuber-expansion stage. Under different salinity stress, before the stolon growth, the ratio of IAA/ABA in leaves increased significantly and that of GA(3)/ABA increased slightly; during tuber development, these ratios continued to decrease and reached the minimum late in the tuber-expansion period. While, salt stress inhibited (i) underground dry matter accumulation, (ii) tuber dry matter accumulation efficiency, (iii) transport of non-reducing sugars to tubers, and (iv) fructan accumulation efficiency during the tuber-expansion period; these effects were accompanied by significantly decreased tuber yield with an increase in salinity. With soil salinity increasing, the synthesis of IAA and GA(3) was inhibited in leaves and tubers, while ABA synthesis was stimulated. In brief, tuber yield would significantly decreased with the increase of salinity. (C) 2016 Elsevier B.V. All rights reserved.

  • 相关文献

[1]Carbon sequestration and Jerusalem artichoke biomass under nitrogen applications in coastal saline zone in the northern region of Jiangsu, China. Li Niu,Chen Manxia,Gao Xiumei,Long Xiaohua,Liu Zhaopu,Shao Hongbo,Shao Hongbo,Zed, Rengel.

[2]The endogenous plant hormones and ratios regulate sugar and dry matter accumulation in Jerusalem artichoke in salt-soil. Li, Lingling,Shao, Tianyun,Yang, Hui,Chen, Manxia,Gao, Xiumei,Long, Xiaohua,Liu, Zhaopu,Shao, Hongbo,Shao, Hongbo,Rengel, Zed.

[3]Jerusalem artichoke: A sustainable biomass feedstock for biorefinery. Long, Xiao-Hua,Liu, Ling,Liu, Li-Ping,Liu, Zhao-Pu,Shao, Hong-Bo,Shao, Hong-Bo.

[4]Transcriptome-based gene expression profiling identifies differentially expressed genes critical for salt stress response in radish (Raphanus sativus L.). Sun, Xiaochuan,Xu, Liang,Wang, Yan,Luo, Xiaobo,Kinuthia, Karanja Benard,Nie, Shanshan,Feng, Haiyang,Li, Chao,Liu, Liwang,Sun, Xiaochuan,Xu, Liang,Wang, Yan,Nie, Shanshan,Liu, Liwang,Zhu, Xianwen.

[5]Rearrangement of nitrogen metabolism in rice (Oryza sativa L.) under salt stress. Xu, Jianwen,Huang, Xi,Lan, Hongxia,Zhang, Hongsheng,Huang, Ji,Xu, Jianwen.

[6]Molybdenum Affects Photosynthesis and Ionic Homeostasis of Chinese Cabbage under Salinity Stress. Hu, Chengxiao,Sun, Xuecheng,Zhao, Xiaohu,Tan, Qiling,Zhang, Ying,Zhang, Mu,Li, Na.

[7]Effects of 5-aminolevulinic acid on nitrogen metabolism and ion distribution of watermelon seedlings under salt stress. Chen, G.,Fan, P. S.,Feng, W. M.,Guan, A. Q.,Lu, Y. Y.,Wan, Y. L..

[8]Roles of xanthophylls and exogenous ABA in protection against NaCl-induced photodamage in rice (Oryza sativa L) and cabbage (Brassica campestris). Zhu, Su-Qin,Chen, Ming-Wei,Liang, Jian-Sheng,Zhu, Su-Qin,Ji, Ben-Hua,Jiao, De-Mao.

[9]Soil salinity increases the tolerance of excessive sulfur fumigation stress in tomato plants. Ding, Xiaotao,Ding, Xiaotao,Deng, Qi,Yu, Chih-Li,Hu, Dafeng, I,Zhang, Dong,Jiang, Yuping,Zhou, Suping.

[10]Physiological and epigenetic analyses of Brassica napus seed germination in response to salt stress. Fang, Yujie,Li, Jian,Jiang, Jinjin,Geng, Yulu,Wang, Jinglei,Wang, Youping,Fang, Yujie.

[11]Comprehensive analysis of differentially expressed genes under salt stress in pear (Pyrus betulaefolia) using RNA-Seq. Li, Hui,Lin, Jing,Yang, Qing-Song,Li, Xiao-Gang,Chang, You-Hong.

[12]Physiological and antioxidant responses of Basella alba to NaCl or Na2SO4 stress. Ai, Shaoying,Yang, Shaohai,Chen, Yong,Sun, Lili,Wang, Ronghui,Li, Mengjun,Zeng, Zhaobing,Ning, Jianfeng,Ai, Shaoying,Yang, Shaohai,Chen, Yong,Sun, Lili,Wang, Ronghui,Li, Mengjun,Zeng, Zhaobing,Ning, Jianfeng,Ai, Shaoying,Yang, Shaohai,Chen, Yong,Sun, Lili,Wang, Ronghui,Li, Mengjun,Zeng, Zhaobing,Ning, Jianfeng,Cui, Lihua.

[13]Genome-wide characterization of the ankyrin repeats gene family under salt stress in soybean. Zhang, Dayong,Wan, Qun,He, Xiaolan,Ning, Lihua,Huang, Yihong,Xu, Zhaolong,Liu, Jia,Shao, Hongbo,Shao, Hongbo.

[14]Seed Germination Ecology of Catchweed Bedstraw (Galium aparine). Wang, Hongchun,Lou, Yuanlai,Zhang, Bing,Dong, Liyao.

[15]Applying hyperspectral imaging to explore natural plant diversity towards improving salt stress tolerance. Brestic, Marian,Shao, Hongbo,He, Xiaolan,Shao, Hongbo,Brestic, Marian,Zivcak, Marek,Olsovska, Katarina,Kovar, Marek,Sytar, Oksana.

[16]De novo transcriptome sequencing of Acer palmatum and comprehensive analysis of differentially expressed genes under salt stress in two contrasting genotypes. Rong, Liping,Li, Qianzhong,Li, Shushun,Tang, Ling,Wen, Jing.

[17]Comparative expression analysis of Calcineurin B-like family gene CBL10A between salt-tolerant and salt-sensitive cultivars in B-oleracea. Xu, Ling,Zhang, Dayong,Xu, Zhaolong,Huang, Yihong,He, Xiaolan,Wang, Jinyan,Shao, Hongbo,Li, Jianbin,Gu, Minfeng.

[18]SUB-CELLULAR DISTRIBUTION OF NUTRIENT ELEMENTS AND PHOTOSYNTHESIS PERFORMANCE IN ORYZA SATIVA L. SEEDLINGS UNDER SALT STRESS. Ma, Jing,Lv, Chunfang,Hao, Peifei,Yuan, Ze,Wang, Yuwen,Shen, Weijun,Xu, Chao,Chen, Guoxiang,Gao, Zhiping,Lv, Chuangen. 2017

[19]Transcriptome sequencing and analysis of major genes involved in calcium signaling pathways in pear plants (Pyrus calleryana Decne.). Lin, Jing. 2015

[20]Characterization of CIPK Family in Asian Pear (Pyrus bretschneideri Behd) and Co-expressin Analysis Related to Salt and Osmotic Stress Responses. Tang, Jun,Lin, Jing,Chang, Youhong,Tang, Jun,Cheng, Zong-Ming. 2016

作者其他论文 更多>>