您好,欢迎访问江苏省农业科学院 机构知识库!

Genome-wide characterization of the ankyrin repeats gene family under salt stress in soybean

文献类型: 外文期刊

作者: Zhang, Dayong 1 ; Wan, Qun 1 ; He, Xiaolan 1 ; Ning, Lihua 1 ; Huang, Yihong 1 ; Xu, Zhaolong 1 ; Liu, Jia 1 ; Shao, Hong 1 ;

作者机构: 1.Jiangsu Acad Agr Sci, Inst Biotechnol, Prov Key Lab Agrobiol, Nanjing 210014, Jiangsu, Peoples R China

2.Chinese Acad Sci, Yantai Inst Coastal Zone Res YIC, Key Lab Coastal Biol & Bioresources Utilizat, Yantai 264003, Peoples R China

关键词: GmANKs;Bioinformatics analyses;GmANK39-like;Salt stress;Expression;Subcellular localization

期刊名称:SCIENCE OF THE TOTAL ENVIRONMENT ( 影响因子:7.963; 五年影响因子:7.842 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Ankyrin repeats (ANK) gene family are common in diverse organisms and play important roles in cell growth, development and response to environmental stresses. Recently, genome-wide identification and evolutionary analyses of the ANK gene family have been carried out in Arabidopsis, rice and maize. However, little is known about the ANK genes in the whole soybean genome. In this study, we described the identification and structural characterization of 162ANK genes in soybean (GmANK). Then, comprehensive bioinformatics analyses of GmANK genes family were performed including gene locus, phylogenetic, domain composition analysis, chromosomal localization and expression profiling. Domain composition analyses showed that GmANK proteins formed eleven subfamilies in soybean. In sicilo expression analysis of these GmANK genes demonstrated that GmANK genes showa diverse/various expression pattern, suggesting that functional diversification of GmANK genes family. Based on digital gene expression profile (DGEP) data between cultivated soybean and wild type under salt treatment, some GmANKs related to salt/drought response were investigated. Moreover, the expression pattern and subcellular localization of GmANK6 were performed. The results will provide important clues to explore ANK genes expression and function in future studies in soybean. (C) 2016 Elsevier B.V. All rights reserved.

  • 相关文献

[1]Molecular cloning and characterization of two novel DREB genes encoding dehydration-responsive element binding proteins in halophyte Suaeda salsa. Sun, Xiao-Bo,Ma, Hong-Xiang,Jia, Xin-Ping,Ye, Xiao-Qing,Chen, Yu.

[2]Overexpression of a PIP1 Gene from Salicornia bigelovii in Tobacco Plants Improves Their Drought Tolerance. Sun, Xiaobo,Deng, Yanming,Liang, Lijian,Jia, Xinping,Xiao, Zheng,Su, Jiale.

[3]Cloning and expression analysis of PpSUT2 encoding a sucrose transporter in pear. Tang, J.,Lin, J.,Zhang, B. L.,Wang, Z. H.,Li, X. G.,Chang, Y. H.,Tang, J.. 2014

[4]Genome-wide analysis of the TPX2 family proteins in Eucalyptus grandis. Gan, Siming,Du, Pingzhou,Yao, Yuan,Wang, Yuqi,Du, Pingzhou,Yao, Yuan,Xie, Qiaoli,Wu, Ai-Min,Du, Pingzhou,Yao, Yuan,Xie, Qiaoli,Wu, Ai-Min,Du, Pingzhou,Wang, Jinyan,Zhang, Baolong,Kumar, Manoj,Wang, Yuqi. 2016

[5]Investigation on subcellular localization of Rice stripe virus in its vector small brown planthopper by electron microscopy. Deng, Jinhua,Li, Shuo,Ji, Yinghua,Zhou, Yijun,Deng, Jinhua,Hong, Jian. 2013

[6]Characterization and subcellular localization of an RNA silencing suppressor encoded by Rice stripe tenuivirus. Xiong, Ruyi,Wu, Jianxiang,Zhou, Xueping,Zhou, Yijun. 2009

[7]Transcriptome-based gene expression profiling identifies differentially expressed genes critical for salt stress response in radish (Raphanus sativus L.). Sun, Xiaochuan,Xu, Liang,Wang, Yan,Luo, Xiaobo,Kinuthia, Karanja Benard,Nie, Shanshan,Feng, Haiyang,Li, Chao,Liu, Liwang,Sun, Xiaochuan,Xu, Liang,Wang, Yan,Nie, Shanshan,Liu, Liwang,Zhu, Xianwen.

[8]Rearrangement of nitrogen metabolism in rice (Oryza sativa L.) under salt stress. Xu, Jianwen,Huang, Xi,Lan, Hongxia,Zhang, Hongsheng,Huang, Ji,Xu, Jianwen.

[9]Molybdenum Affects Photosynthesis and Ionic Homeostasis of Chinese Cabbage under Salinity Stress. Hu, Chengxiao,Sun, Xuecheng,Zhao, Xiaohu,Tan, Qiling,Zhang, Ying,Zhang, Mu,Li, Na.

[10]Effects of 5-aminolevulinic acid on nitrogen metabolism and ion distribution of watermelon seedlings under salt stress. Chen, G.,Fan, P. S.,Feng, W. M.,Guan, A. Q.,Lu, Y. Y.,Wan, Y. L..

[11]Roles of xanthophylls and exogenous ABA in protection against NaCl-induced photodamage in rice (Oryza sativa L) and cabbage (Brassica campestris). Zhu, Su-Qin,Chen, Ming-Wei,Liang, Jian-Sheng,Zhu, Su-Qin,Ji, Ben-Hua,Jiao, De-Mao.

[12]Soil salinity increases the tolerance of excessive sulfur fumigation stress in tomato plants. Ding, Xiaotao,Ding, Xiaotao,Deng, Qi,Yu, Chih-Li,Hu, Dafeng, I,Zhang, Dong,Jiang, Yuping,Zhou, Suping.

[13]Physiological and epigenetic analyses of Brassica napus seed germination in response to salt stress. Fang, Yujie,Li, Jian,Jiang, Jinjin,Geng, Yulu,Wang, Jinglei,Wang, Youping,Fang, Yujie.

[14]Comprehensive analysis of differentially expressed genes under salt stress in pear (Pyrus betulaefolia) using RNA-Seq. Li, Hui,Lin, Jing,Yang, Qing-Song,Li, Xiao-Gang,Chang, You-Hong.

[15]Physiological and antioxidant responses of Basella alba to NaCl or Na2SO4 stress. Ai, Shaoying,Yang, Shaohai,Chen, Yong,Sun, Lili,Wang, Ronghui,Li, Mengjun,Zeng, Zhaobing,Ning, Jianfeng,Ai, Shaoying,Yang, Shaohai,Chen, Yong,Sun, Lili,Wang, Ronghui,Li, Mengjun,Zeng, Zhaobing,Ning, Jianfeng,Ai, Shaoying,Yang, Shaohai,Chen, Yong,Sun, Lili,Wang, Ronghui,Li, Mengjun,Zeng, Zhaobing,Ning, Jianfeng,Cui, Lihua.

[16]Balance between salt stress and endogenous hormones influence dry matter accumulation in Jerusalem artichoke. Shao, Tianyun,Li, Lingling,Wu, Yawen,Chen, Manxia,Long, Xiaohua,Liu, Zhaopu,Shao, Hongbo,Shao, Hongbo,Rengel, Zed.

[17]Seed Germination Ecology of Catchweed Bedstraw (Galium aparine). Wang, Hongchun,Lou, Yuanlai,Zhang, Bing,Dong, Liyao.

[18]Applying hyperspectral imaging to explore natural plant diversity towards improving salt stress tolerance. Brestic, Marian,Shao, Hongbo,He, Xiaolan,Shao, Hongbo,Brestic, Marian,Zivcak, Marek,Olsovska, Katarina,Kovar, Marek,Sytar, Oksana.

[19]De novo transcriptome sequencing of Acer palmatum and comprehensive analysis of differentially expressed genes under salt stress in two contrasting genotypes. Rong, Liping,Li, Qianzhong,Li, Shushun,Tang, Ling,Wen, Jing.

[20]Comparative expression analysis of Calcineurin B-like family gene CBL10A between salt-tolerant and salt-sensitive cultivars in B-oleracea. Xu, Ling,Zhang, Dayong,Xu, Zhaolong,Huang, Yihong,He, Xiaolan,Wang, Jinyan,Shao, Hongbo,Li, Jianbin,Gu, Minfeng.

作者其他论文 更多>>