Isolation, structural analysis, and expression characteristics of the maize nuclear factor Y gene families
文献类型: 外文期刊
作者: Zhang, Zhongbao 1 ; Li, Xianglong 1 ; Zhang, Chun 1 ; Zou, Huawen 2 ; Wu, Zhongyi 1 ;
作者机构: 1.Beijing Acad Agr & Forestry Sci, Beijing Agrobiotechnol Res Ctr, Beijing, Peoples R China
2.Yangtze Univ, Coll Agr, Hubei Collaborat Innovat Ctr Grain Ind, Jingzhou 434023, Hubei, Peoples R China
关键词: Maize;NF-Y transcription factor;Gene duplication;Expression profiling;Stress
期刊名称:BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS ( 影响因子:3.575; 五年影响因子:3.381 )
ISSN:
年卷期:
页码:
收录情况: SCI
摘要: NUCLEAR FACTOR-Y (NF-Y) has been shown to play an important role in growth, development, and response to environmental stress. A NF-Y complex, which consists of three subunits, NF-YA, NF-YB, and, NF-YC, binds to CCAAT sequences in a promoter to control the expression of target genes. Although NF-Y proteins have been reported in Arabidopsis and rice, a comprehensive and systematic analysis of ZmNF-Y genes has not yet been performed. To examine the functions of ZmNF-Y genes in this family, we isolated and characterized 50 ZmNF-Y (14 ZmNF-YA, 18 ZmNF-YB, and 18 ZmNF-YC) genes in an analysis of the maize genome. The 50 ZmNF-Y genes were distributed on all 10 maize chromosomes, and 12 paralogs were identified. Multiple alignments showed that maize ZmNF-Y family proteins had conserved regions and relatively variable N-terminal or C-terminal domains. The comparative syntenic map illustrated 40 paralogous NF-Y gene pairs among the 10 maize chromosomes. Microarray data showed that the ZmNF-Y genes had tissue-specific expression patterns in various maize developmental stages and in response to biotic and abiotic stresses. The results suggested that ZmNF-YB2, 4, 8, 10, 13, and 16 and ZmNF-YC6, 8, and 15 were induced, while ZmNF-YA1, 3, 4, 6, 7, 10, 12, and 13, ZmNF-YB15, and ZmNF-YC3 and 9 were suppressed by drought stress. ZmNF-YA3, ZmNF-YA8 and ZmNF-YA12 were upregulated after infection by the three pathogens, while ZmNF-YA1 and ZmNF-YB2 were suppressed. These results indicate that the ZmNFYs may have significant roles in the response to abiotic and biotic stresses. (C) 2016 Elsevier Inc. All rights reserved.
- 相关文献
作者其他论文 更多>>
-
The TIFY transcription factor ZmJAZ13 enhances plant tolerance to drought and salt stress by interacting with ZmbHLH161 and ZmA0A1D6GLB9
作者:Zhang, Shipeng;Lu, Yuncai;Zhang, Shipeng;Zheng, Dengyu;Gao, Yuqi;She, Meng;Wu, Zhongyi;Zhang, Zhongbao;Gao, Yuqi
关键词:Maize; ZmJAZ13; Drought stress; Salt stress; Response to adversity
-
Functional characterization of RNAi candidate target genes in Monolepta hieroglyphica (Motschulsky) for potential pest control applications
作者:Chen, Xu;Fu, Ning;Xu, Qingxuan;Wang, Su;Xiao, Da;Zhang, Chun;Chen, Xu
关键词:Monolepta hieroglyphica; Lethal effect; RNAi; Potential gene
-
Insight into the Functional Role of SiMPK6 in Stress Response and Photosynthetic Efficiency in Setaria italica
作者:Zhu, Dan;Hu, Xiaobing;Feng, Feng;Chai, Ran;Wang, Hailong;Li, Xianglong;Song, Wenqing;Wei, Jianhua;Zhang, Jiewei;Zhang, Yonghu;Wen, Rui
关键词:
Setaria italica ; MAPK protein; SiMPK6; foxtail millet; abiotic stresses; photosynthetic efficiency -
Chromosome-level genome assembly of
Monolepta hieroglyphica , two-spotted leaf beetle (Coleoptera: Chrysomelidae)作者:He, Hao;Zhao, Yongxin;Zheng, Dengyu;Shen, Fei;Wei, Jianhua;Yang, Xiaozeng;Wu, Zhongyi;Zhang, Chun;Kuang, Huiyun;He, Kang;He, Kang;He, Kang;Zhang, Haiyan;Zhao, Changjiang;Jiang, Lu;Xiao, Da;Wang, Su;Wang, Zhenying;Zhan, Shuai;Yang, Xiaozeng
关键词:
-
Functional identification and characterization of two flavonoid glycosyltransferases ZmUGT84A3 and ZmUGT84A4 from maize
作者:Ke, Zhao;Lu, Min;Ke, Zhao;Zheng, Dengyu;She, Meng;Zhang, Shipeng;Wu, Zhongyi;Zhang, Zhongbao;She, Meng
关键词:Uridine diphosphate glycosyltransferases; Maize; Flavonoid; Luteolin; In vitro experiments
-
ZmLSD1 Enhances Salt Tolerance by Regulating the Expression of ZmWRKY29 in Maize
作者:Li, Qiaolu;Hu, Rongrong;Zhang, Wei;Gao, Xinyi;Zhang, Binglin;Liu, Weijuan;Zou, Huawen;Jiang, Min;Wu, Zhongyi
关键词:ZmLSD1; transcription factor; maize; salt stress
-
Cloning, Expression, and Functional Characterization of Two Highly Efficient Flavonoid-di-O-glycosyltransferases ZmUGT84A1 and ZmUGT84A2 from Maize (Zea mays L.)
作者:Sun, Xiaorong;Ke, Zhao;Zheng, Dengyu;She, Meng;Wu, Zhongyi;Zhang, Zhongbao;Ke, Zhao;She, Meng;Li, Qing X.
关键词:flavonoid-di-O-glycosyltransferase; ZmUGT84A1; ZmUGT84A2; glycoxidation; glycoside; maize



