您好,欢迎访问江苏省农业科学院 机构知识库!

Analysis of chlorophyll a fluorescence and proteomic differences of rice leaves in response to photooxidation

文献类型: 外文期刊

作者: Ma, Jing 1 ; Lv, Chunfang 1 ; Xu, Minli 1 ; Hao, Peifei 1 ; Wang, Yuwen 1 ; Shen, Weijun 1 ; Gao, Zhiping 1 ; Chen, Guoxi 1 ;

作者机构: 1.Nanjing Normal Univ, Sch Life Sci, Jiangsu Key Lab Biodivers & Biotechnol, 1 Wenyuan Rd, Nanjing 210023, Jiangsu, Peoples R China

2.Nanjing Normal Univ, Sch Life Sci, Jiangsu Key Lab Biodivers & Biotechnol, 1 Wenyuan Rd, Nanjing 210023, Ji

关键词: Chlorophyll a fluorescence;Photooxidation proteomic analysis;Rice

期刊名称:ACTA PHYSIOLOGIAE PLANTARUM ( 影响因子:2.354; 五年影响因子:2.711 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: This study investigated the effects of increased sunlight on photooxidation of rice leaf mutant 812HS and its wild-type 812S under field conditions. Light is important for plant growth and development. However, when the absorbed energy exceeds the capacity of utilization of photosynthesis, it leads to the accumulation of singlet oxygen molecules and other reactive oxygen species, which causes oxidative damage. Chlorophyll a fluorescence was applied to examine photosystem II photochemistry. The results demonstrated that intensive light had a negative influence on plant photosynthetic processes. However, the electron transport chain was inhibited and energy dissipation was increased, which can minimize photooxidative damage to the optical system. Meanwhile, proteomic analysis showed that the differential expression of proteins in response to photooxidation participated in multiple pathways, including ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) large subunit, RuBisCO large chain precursor, RuBisCO activase, flavodoxin- like quinone reductase 1, L-ascorbate peroxidase S, oxygen-evolving complex protein 1, and glycolate oxidase. The results indicated that photooxidation induced a response in the rice via the stress-related pathway. The aforementioned proteins, identified by two-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS), may be very useful in comprehending how plants respond to photooxidation and can be used as characteristics of stress-induced signals. The results of chlorophyll fluorescence parameter analysis demonstrated the negative influence of intense light on plant photosynthetic processes. This was evidenced by the dissipation of excessive energy and the suppression of the electron transport chain to minimize photooxidative damage to the proteins. Future studies should compare the proteomic difference with parallel gene expression and metabolite profiles.

  • 相关文献

[1]A limited photosynthetic C-4-microcycle and its physiological function in transgenic rice plant expressing the maize PEPC gene. Ji, BH,Zhu, SQ,Jiao, DM. 2004

[2]Characterization of Grain Quality and Starch Fine Structure of Two Japonica Rice (Oryza Sativa) Cultivars with Good Sensory Properties at Different Temperatures during the Filling Stage. Zhang, Changquan,Zhou, Lihui,Lu, Huwen,Zhou, Xingzhong,Qan, Yiting,Li, Qianfeng,Lu, Yan,Gu, Minghong,Liu, Qiaoquan,Zhou, Lihui,Zhu, Zhengbin.

[3]A novel, in vivo, indoor method to preserve rice black-streaked dwarf virus in small brown planthopper using wheat seedling as a bridge host. Ren, Chunmei,Cheng, Zhaobang,Yang, Liu,Miao, Qian,Fan, Yongjian,Zhou, Yijun.

[4]Delivery of roxarsone via chicken diet -> chicken -> chicken manure -> soil -> rice plant. Lu, Weisheng,Bai, Cuihua,Huang, Lianxi,He, Zhaohuan,Zhou, Changmin.

[5]Natural Variations in SLG7 Regulate Grain Shape in Rice. Miao, Jun,Peng, Xiurong,Leburu, Mamotshewa,Yuan, Fuhai,Gu, Houwen,Gao, Yun,Tao, Yajun,Gong, Zhiyun,Yi, Chuandeng,Gu, Minghong,Yang, Zefeng,Liang, Guohua,Gu, Haiyong,Zhu, Jinyan.

[6]Periphyton growth reduces cadmium but enhances arsenic accumulation in rice (Oryza sativa) seedlings from contaminated soil. Shi, Gao Ling,Ma, Hong Xiang,Lu, Hai Ying,Liu, Jun Zhuo,Wu, Yong Hong,Lou, Lai Qing,Tang, Xian Jin.

[7]Changes in Violaxanthin Deepoxidase Activity and Unsaturation of Thylakoid Membrane Lipids in Indica and Japonica Rice Under Chilling Condition and Strong Light. Ji, BH,Cao, YY,Xie, HS,Zhu, SQ,Ma, Q,Jian, DM.

[8]In Situ Field-Scale Remediation of Low Cd-Contaminated Paddy Soil Using Soil Amendments. Ai, Shao-ying,Wang, Yan-hong,Tang, Ming-deng,Li, Yi-Chun,Li, Lin-feng,Ai, Shao-ying,Wang, Yan-hong,Tang, Ming-deng,Li, Yi-Chun,Li, Lin-feng,Ai, Shao-ying,Wang, Yan-hong,Tang, Ming-deng,Li, Yi-Chun.

[9]Photosynthesis performance, antioxidant enzymes, and ultrastructural analyses of rice seedlings under chromium stress. Ma, Jing,Lv, Chunfang,Xu, Minli,Chen, Guoxiang,Gao, Zhiping,Lv, Chuangen.

[10]Molecular functions of genes related to grain shape in rice. Zheng, Jia,Zhang, Yadong,Wang, Cailin.

[11]Development of Chromosome Segment Substitution Lines Derived from Backcross between Two Sequenced Rice Cultivars, Indica Recipient 93-11 and Japonica Donor Nipponbare. Zhu, Wenyin,Lin, Jing,Yang, Dewei,Zhao, Ling,Zhang, Yadong,Zhu, Zhen,Chen, Tao,Wang, Cailin.

[12]Overexpression of the nitrate transporter, OsNRT2.3b, improves rice phosphorus uptake and translocation. Feng, Huimin,Zhi, Yang,Li, Ran,Li, Bin,Chen, Jingguang,Xu, Guohua,Fan, Xiaorong,Li, Bin,Chen, Jingguang,Xu, Guohua,Fan, Xiaorong,Xia, Xiudong.

[13]Genetic linkage map of Lolium multiflorum Lam. constructed from a BC1 population derived from an interspecific hybridization, L. multiflorum x Lolium temulentum L. x L. temulentum. Guan, Xuanli,Tan, Lubin,Fu, Yongcai,Cai, Hongwei,Guan, Xuanli,Tan, Lubin,Fu, Yongcai,Cai, Hongwei,Hirata, Mariko,Yuyama, Nana,Cai, Hongwei,Ding, Chenglong,Xu, Nengxiang,Tan, Lubin,Wang, Jianping.

[14]Short and erect rice (ser) mutant from Khao Dawk Mali 105' improves plant architecture. Yan, Wengui,Jia, Limeng,Jackson, Aaron,Pan, Xuhao,Hu, Biaolin,Zhang, Qijun,Jia, Limeng,Jia, Limeng,Pan, Xuhao,Yan, Zongbu,Deren, Christopher,Pan, Xuhao,Huang, Bihu.

[15]Effects of the fungal endophyte Phomopsis liquidambari on nitrogen uptake and metabolism in rice. Yang, Bo,Wang, Xiao-Mi,Ma, Hai-Yan,Jia, Yong,Dai, Chuan-Chao,Li, Xia.

[16]Nitrogen use efficiency (NUE) in rice links to NH4 (+) toxicity and futile NH4 (+) cycling in roots. Chen, Gui,Shi, Weiming,Chen, Gui,Guo, Shiwei,Kronzucker, Herbert J..

[17]Genetic analysis and molecular mapping of a nuclear recessive male sterility gene, ms91(t), in rice. Liu, Xia,Wang, Songwen,Wang, Yong,Wei, Shu.

[18]A novel nuclear protein phosphatase 2C negatively regulated by ABL1 is involved in abiotic stress and panicle development in rice. Li, Yu-Sheng,Huang, Sheng-Dong,Yang, Juan,Sun, Hui,Wang, Zhou-Fei,Duan, Min,Yang, Juan,Zhang, Hong-Sheng.

[19]Effect of stable antimicrobial nano-silver packaging on inhibiting mildew and in storage of rice. Li, Li,Zhao, Chanjuan,Yang, Wenjian,Hu, Qiuhui,Cao, Chongjiang,Zhang, Yadong,Wang, Cailin,Yao, Jianfeng.

[20]Identification of a bacterium isolated from the diseased brown planthopper and determination of its insecticidal activity. Niu, Hongtao,Liu, Baosheng,Li, Yongteng,Guo, Huifang.

作者其他论文 更多>>