您好,欢迎访问江苏省农业科学院 机构知识库!

Analysis of chlorophyll a fluorescence and proteomic differences of rice leaves in response to photooxidation

文献类型: 外文期刊

作者: Ma, Jing 1 ; Lv, Chunfang 1 ; Xu, Minli 1 ; Hao, Peifei 1 ; Wang, Yuwen 1 ; Shen, Weijun 1 ; Gao, Zhiping 1 ; Chen, Guoxi 1 ;

作者机构: 1.Nanjing Normal Univ, Sch Life Sci, Jiangsu Key Lab Biodivers & Biotechnol, 1 Wenyuan Rd, Nanjing 210023, Jiangsu, Peoples R China

2.Nanjing Normal Univ, Sch Life Sci, Jiangsu Key Lab Biodivers & Biotechnol, 1 Wenyuan Rd, Nanjing 210023, Ji

关键词: Chlorophyll a fluorescence;Photooxidation proteomic analysis;Rice

期刊名称:ACTA PHYSIOLOGIAE PLANTARUM ( 影响因子:2.354; 五年影响因子:2.711 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: This study investigated the effects of increased sunlight on photooxidation of rice leaf mutant 812HS and its wild-type 812S under field conditions. Light is important for plant growth and development. However, when the absorbed energy exceeds the capacity of utilization of photosynthesis, it leads to the accumulation of singlet oxygen molecules and other reactive oxygen species, which causes oxidative damage. Chlorophyll a fluorescence was applied to examine photosystem II photochemistry. The results demonstrated that intensive light had a negative influence on plant photosynthetic processes. However, the electron transport chain was inhibited and energy dissipation was increased, which can minimize photooxidative damage to the optical system. Meanwhile, proteomic analysis showed that the differential expression of proteins in response to photooxidation participated in multiple pathways, including ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) large subunit, RuBisCO large chain precursor, RuBisCO activase, flavodoxin- like quinone reductase 1, L-ascorbate peroxidase S, oxygen-evolving complex protein 1, and glycolate oxidase. The results indicated that photooxidation induced a response in the rice via the stress-related pathway. The aforementioned proteins, identified by two-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS), may be very useful in comprehending how plants respond to photooxidation and can be used as characteristics of stress-induced signals. The results of chlorophyll fluorescence parameter analysis demonstrated the negative influence of intense light on plant photosynthetic processes. This was evidenced by the dissipation of excessive energy and the suppression of the electron transport chain to minimize photooxidative damage to the proteins. Future studies should compare the proteomic difference with parallel gene expression and metabolite profiles.

  • 相关文献

[1]A limited photosynthetic C-4-microcycle and its physiological function in transgenic rice plant expressing the maize PEPC gene. Ji, BH,Zhu, SQ,Jiao, DM. 2004

[2]Practice and thoughts on developing hybrid rice for super high yield by exploiting intersubspecific heterosis. Zou Jiang-shi,Lu Chuan-gen. 2009

[3]Functional Marker Development and Effect Analysis of Grain Size Gene GW2 in Extreme Grain Size Germplasm in Rice. Zhang Ya-dong,Zheng Jia,Liang Yan-li,Zhao Chun-fang,Chen Tao,Zhao Qing-yong,Zhu Zhen,Zhou Li-hui,Yao Shu,Zhao Ling,Yu Xing,Wang Cai-lin. 2015

[4]Correlation between appearance of embryogenic cells and the IAA levels in rice somatic cell culture. Chen, YF,Zhou, X,Tang, RS,Zhang, JY,Mei, CS. 1998

[5]Proteome-wide lysine acetylation identification in developing rice (Oryza sativa) seeds and protein co-modification by acetylation, succinylation, ubiquitination, and phosphorylation. Meng, Xiaoxi,Lv, Yuanda,Mujahid, Hana,Peng, Zhaohua,Lv, Yuanda,Zhao, Han,Edelmann, Mariola J.,Peng, Xiaojun. 2018

[6]Identification of QTL Associated with Nitrogen Uptake and Nitrogen Use Efficiency Using High Throughput Genotyped CSSLs in Rice (Oryza sativa L.). Zhou, Yong,Tao, Yajun,Tang, Dongnan,Zhong, Jun,Wang, Yi,Yuan, Qiumei,Yu, Xiaofeng,Zhang, Yan,Wang, Yulong,Liang, Guohua,Dong, Guichun,Wang, Jun. 2017

[7]Changes in unsaturated levels of fatty acids in thylakoid PSII membrane lipids during chilling-induced resistance in rice. Zhu, Su-Qin,Yu, Chun-Mei,Liu, Xin-Yan,Ji, Ben-Hua,Jiao, De-Mao. 2007

[8]Oscyp71Z2 involves diterpenoid phytoalexin biosynthesis that contributes to bacterial blight resistance in rice. Li, Wenqi,Shao, Min,Qian, Guoliang,Liu, Fengquan,Li, Wenqi,Yang, Jie,Zhong, Weigong,Li, Wenqi,Shao, Min,Qian, Guoliang,Liu, Fengquan,Okada, Kazunori,Yamane, Hisakazu. 2013

[9]Regulation of ATG6/Beclin-1 homologs by abiotic stresses and hormones in rice (Oryza sativa L.). Rana, R. M.,Dong, S.,Huang, J.,Zhang, H. S.,Rana, R. M.,Ali, Z.,Ali, Z.. 2012

[10]Morphology and photosynthetic enzyme activity of maize phosphoenolpyruvate carboxylase transgenic rice. Li, W. C.,Wang, J.,Sun, Y. L.,Ji, S. D.,Guo, S. W.. 2015

[11]Identification of an active Mutator-like element (MULE) in rice (Oryza sativa). Gao, Dongying,Gao, Dongying. 2012

[12]Verification and evaluation of grain QTLs using RILs from TD70 x Kasalath in rice. Zhang, Y. D.,Liang, Y. L.,Wang, C. L.,Zhang, Y. D.,Zheng, J.,Wang, C. L.,Liang, Z. K.,Peng, Z. H.. 2015

[13]Rice growth monitoring using simulated compact polarimetric C band SAR. Yang, Zhi,Li, Kun,Liu, Long,Shao, Yun,Yang, Zhi,Liu, Long,Brisco, Brian,Li, Weiguo. 2014

[14]Simulating the optimal growing season of rice in the Yangtze River Valley and its adjacent area, China. Huang, Y,Gao, LZ,Jin, ZQ,Chen, H. 1998

[15]Physiological basis of photosynthetic tolerance to photooxidation and shading in rice. Li, X,Jiao, DM. 2000

[16]Comparative Proteomic Analysis of Susceptible and Resistant Rice Plants during Early Infestation by Small Brown Planthopper. Chen, Jianping,Dong, Yan,Yang, Yong,Wang, Xuming,Yu, Chulang,Zhou, Jie,Yan, Chengqi,Chen, Jianping,Fang, Xianping,Fang, Xianping,Xue, Gang-Ping,Chen, Xian,Zhang, Weilin,Mei, Qiong,Fang, Wang. 2017

[17]Genetic and molecular analysis of a purple sheath somaclonal mutant in japonica rice. Gao, Dongying,He, Bing,Sun, Lihua,Zhou, Yihong. 2011

[18]Performance and Analysis of a Model for Describing Layered Leaf Area Index of Rice. Lue Chuan-gen,Yao Ke-min,Hu Ning. 2011

[19]High/low nitrogen adapted hybrid of rice cultivars and their physiological responses. Li Xia,Sun Zhiwei,Jin Lei,Han Lei,Ren Chenggang,Wang Man,Lu Chuangen. 2011

[20]Genetic Improvement of Japonica Rice Variety Wuyujing 3 for Stripe Disease Resistance and Eating Quality by Pyramiding Stv-b(i) and Wx-mq. Chen Tao,Wu Hao,Zhang Ya-dong,Zhu Zhen,Zhao Qi-yong,Zhou Li-hui,Yao Shu,Zhao Ling,Yu Xin,Zhao Chun-fang,Wang Cai-lin,Chen Tao. 2016

作者其他论文 更多>>