您好,欢迎访问河南省农业科学院 机构知识库!

Physiological characteristics and metabolomics of transgenic wheat containing the maize C-4 phosphoenolpyruvate carboxylase (PEPC) gene under high temperature stress

文献类型: 外文期刊

作者: Qi, Xueli 1 ; Xu, Weigang 2 ; Zhang, Jianzhou 2 ; Guo, Rui 2 ; Zhao, Mingzhong 2 ; Hu, Lin 2 ; Wang, Huiwei 2 ; Dong, Hai 1 ;

作者机构: 1.Henan Agr Univ, Coll Agron, Zhengzhou 450002, Henan, Peoples R China

2.Henan Acad Agr Sci, Wheat Res Inst, Zhengzhou 450002, Henan, Peoples R China

关键词: Wheat;Heat tolerance;Phosphoenolpyruvate carboxylase (PEPC);Photosynthesis;Metabolomic

期刊名称:PROTOPLASMA ( 影响因子:3.356; 五年影响因子:3.298 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: In this paper, two transgenic wheat lines, PC27 and PC51, containing the maize PEPC gene and its wild-type (WT) were used as experimental material to study the effects of high temperature on their photosynthetic physiological characteristics and metabolome. The results showed that transgenic wheat lines had higher photosynthetic rate (P (n)) than WT under non-stress treatment (NT) and high temperature stress treatment (HT), and more significantly under HT. The change trends of F (v)/F (m), D (PSII), and q (P) were similar to P (n), whereas that of non-photochemical quenching (NPQ) was the opposite. Compared with WT, no differences in chlorophyll content between the transgenic wheat and WT were observed under NT, but two transgenic lines had relatively higher contents than WT under HT. The change trends of Chlorophyll a/b radio, the decreased values of F (m), W-k, and V-j, and the activity of the antioxidant enzyme were consistent with the chlorophyll content. Compared with WT, transgenic wheat lines exhibited lower rate of superoxide anion production, H2O2 and malondialdehyde content under HT, and no significant differences were observed under NT. The expression pattern of the ZmPEPC gene and wheat endogenous photosynthesis-related genes were in agreement with that of P (n). Compared with WT, about 13 different metabolites including one organic acid, six amino acids, four sugars, and two polyols were identified under NT; 25 different metabolites including six organic acids, 12 amino acids, four sugars, and three polyols were identified under HT. Collectively, our results indicate that ZmPEPC gene can enhance photochemical and antioxidant enzyme activity, upregulate the expression of photosynthesis-related genes, delay degradation of chlorophyll, change contents of proline and other metabolites in wheat, and ultimately improves its heat tolerance.

  • 相关文献

[1]Pyramiding expression of maize genes encoding phosphoenolpyruvate carboxylase (PEPC) and pyruvate orthophosphate dikinase (PPDK) synergistically improve the photosynthetic characteristics of transgenic wheat. Zhang, HuiFang,Zhang, HuiFang,Xu, WeiGang,Wang, HuiWei,Hu, Lin,Li, Yan,Qi, XueLi,Zhang, Lei,Li, ChunXin,Hua, Xia.

[2]Drought tolerance and proteomics studies of transgenic wheat containing the maize C-4 phosphoenolpyruvate carboxylase (PEPC) gene. Qin, Na,Xu, Weigang,Hu, Lin,Li, Yan,Wang, Huiwei,Qi, Xueli,Fang, Yuhui,Hua, Xia.

[3]Molybdenum Affects Photosynthesis and Ionic Homeostasis of Chinese Cabbage under Salinity Stress. Hu, Chengxiao,Sun, Xuecheng,Zhao, Xiaohu,Tan, Qiling,Zhang, Ying,Zhang, Mu,Li, Na.

[4]Improvement of the photosynthetic characteristics of transgenic wheat plants by transformation with the maize C4 phosphoenolpyruvate carboxylase gene. Hu, Lin,Li, Yan,Xu, Weigang,Zhang, Qingchen,Zhang, Lei,Qi, Xueli,Dong, Haibin,Hu, Lin. 2012

[5]Wheat and barley as banker plant in the mass production of Aphidius gifuensis Ashmead (Hymenoptera: Braconidae) parasitizing Schizaphis graminum Rondani (Homoptera: Aphididae). Sun, Hui Zhong,Wang, Xiao Dong,Song, Yue Qin,Chen, Yu Guo,Wang, Hai Tao,Li, Shu Jun.

[6]Crop productivity and nutrient use efficiency as affected by long-term fertilisation in North China Plain. Wang, Yingchun,Wang, Enli,Smith, Chris J.,Wang, Yingchun,Huang, Shaomin,Wang, Daolong,Ma, Yibing,Wang, Ligang.

[7]UPLC-QTOF analysis reveals metabolomic changes in the flag leaf of wheat (Triticum aestivum L.) under low-nitrogen stress. Zhang, Yang,Ma, Xin-ming,Guo, Xiao-yang,Xiong, Shu-ping,Wang, Xiao-chun,Liu, Ji-hong,Huang, Bing-yan,La, Gui-xiao.

[8]Progress in improving stem lodging resistance of Chinese wheat cultivars. Zhang, Yu,Zhang, Yu,Xu, Weigang,Wang, Huiwei,Fang, Yuhui,Dong, Haibin,Qi, Xueli.

[9]Progress in genetic improvement of grain yield and related physiological traits of Chinese wheat in Henan Province. Zhang, Yu,Zhang, Yu,Xu, Weigang,Wang, Huiwei,Dong, Haibin,Qi, Xueli,Zhao, Mingzhong,Fang, Yuhui,Gao, Chong,Hu, Lin.

[10]Examining view angle effects on leaf N estimation in wheat using field reflectance spectroscopy. Song, Xiao,Feng, Wei,He, Li,Zhang, Hai-Yan,Li, Xiao,Wang, Chen-Yang,Guo, Tian-Cai,Song, Xiao,Xu, Duanyang,Wang, Zhi-Jie,Coburn, Craig A..

[11]Predicting grain yield and protein content in wheat by fusing multi-sensor and multi-temporal remote-sensing images. Wang, Laigang,Tian, Yongchao,Yao, Xia,Zhu, Yan,Cao, Weixing,Wang, Laigang.

[12]Effects of the maize C-4 phosphoenolpyruvate carboxylase (ZmPEPC) gene on nitrogen assimilation in transgenic wheat. Peng, Chaojun,Xu, Weigang,Peng, Chaojun,Xu, Weigang,Hu, Lin,Li, Yan,Qi, Xueli,Wang, Huiwei,Hua, Xia,Zhao, Mingzhong. 2018

[13]Smash-ridging tillage increases wheat yield and yield components in the Huai-He valley, China. Huang, Shao-min,Zhang, Shui-qing,Zhang, Yu-ting,Egrinya, Eneji A.,Zhang, Qiao-ping,Wei, Ben-hui. 2013

[14]Preliminary Study on the Physiological Characteristics of Transgenic Wheat with Maize C-4-pepc Gene in Field Conditions. Han, L. L.,Han, L. L.,Xu, W. G.,Hu, L.,Li, Y.,Qi, X. L.,Zhang, J. H.,Zhang, H. F.,Wang, Y. X.. 2014

[15]Modelling and predicting crop yield, soil carbon and nitrogen stocks under climate change scenarios with fertiliser management in the North China Plain. Zhang, Xubo,Xu, Minggang,Sun, Nan,Zhang, Xubo,Wu, Lianhai,Xiong, Wei,Huang, Shaomin.

[16]Analysis of differential transcriptional profiling in wheat infected by Blumeria graminis f. sp tritici using GeneChip. Wang, Jun-Mei,Liu, Hong-Yan,Wang, Jun-Mei,Liu, Hong-Yan,Xu, Hong-Ming,Li, Min,Wang, Jun-Mei,Liu, Hong-Yan,Kang, Zhen-Sheng,Kang, Zhen-Sheng,Kang, Zhen-Sheng. 2012

[17]Genome-wide identification and functional prediction of novel and fungi-responsive lincRNAs in Triticum aestivum. Zhang, Hong,Hu, Weiguo,Hao, Jilei,Lv, Shikai,Wang, Changyou,Tong, Wei,Wang, Yajuan,Wang, Yanzhen,Liu, Xinlun,Ji, Wanquan,Hu, Weiguo. 2016

作者其他论文 更多>>