您好,欢迎访问江苏省农业科学院 机构知识库!

The effect of periphyton on seed germination and seedling growth of rice (Oryza sativa) in paddy area

文献类型: 外文期刊

作者: Lu, Haiying 1 ; Liu, Junzhuo 1 ; Kerr, Philip G. 3 ; Shao, Hongbo 2 ; Wu, Yonghong 1 ;

作者机构: 1.Chinese Acad Sci, Inst Soil Sci, State Key Lab Soil & Sustainable Agr, 71 East Beijing Rd, Nanjing 210008, Jiangsu, Peoples R China

2.Jiangsu Acad Agr Sci, Inst Agrobiotechnol, 50 Zhongling Rd, Nanjing 210014, Jiangsu, Peoples R China

3.Charles Sturt Univ, Sch Biomed Sci, Boorooma St, Wagga Wagga, NSW 2678, Australia

关键词: Periphyton;Straw;Biochar;Rice seed germination;Rice seedling growth

期刊名称:SCIENCE OF THE TOTAL ENVIRONMENT ( 影响因子:7.963; 五年影响因子:7.842 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Periphyton is widely distributed in paddy fields and its interactions with paddy soil and rice growth have been reported rarely. In this study, model paddy ecosystems with different additional soil substrates were simulated under controlled conditions to investigate the effects of periphyton on rice seed germination and seedling growth. Results show that the selected soil substrates had significant effects on the metabolic activities and growth of periphyton in paddy fields. The addition of straw to soil enhances but the addition of biochar leads to attenuation of periphyton growth. The presence of periphyton in the paddy system, especially with straw in soil greatly increased the germination index of rice seed (by maximally 21%). However, the biochar treatment in the presence of periphyton was detrimental for the seed vitality with a decrease of 30%. As a result, the periphyton cover on paddy soil surface significantly inhibited the growth of rice seedling, including rice height, leaf width and biomass. To summarize, this study indicates that the presence of periphyton during seed germination period was detrimental for rice growth, but could be used to control the weed growth. Thus, this study provided insight into understanding the periphyton-plant relationships with different soil-substrates and also new approaches to controlling weeds in paddy fields by regulating the growth of periphyton. (C) 2016 Elsevier B.V. All rights reserved.

  • 相关文献

[1]Periphytic biofilm: A buffer for phosphorus precipitation and release between sediments and water. Lu, Haiying,Wan, Juanjuan,Li, Jiuyu,Wu, Yonghong,Lu, Haiying,Shao, Hongbo,Wan, Juanjuan.

[2]Phototrophic periphyton techniques combine phosphorous removal and recovery for sustainable salt-soil zone. Lu, Haiying,Feng, Yanfang,Yang, Linzhang,Shao, Hongbo,Shao, Hongbo,Lu, Haiying,Wu, Yonghong.

[3]Periphyton growth reduces cadmium but enhances arsenic accumulation in rice (Oryza sativa) seedlings from contaminated soil. Shi, Gao Ling,Ma, Hong Xiang,Lu, Hai Ying,Liu, Jun Zhuo,Wu, Yong Hong,Lou, Lai Qing,Tang, Xian Jin.

[4]Responses of periphyton morphology, structure, and function to extreme nutrient loading. Lu, Haiying,Feng, Yanfang,Yang, Linzhang,Lu, Haiying,Feng, Yanfang,Wu, Yonghong,Yang, Linzhang,Lu, Haiying,Shao, Hongbo,Wang, Jinhua.

[5]The adsorption process during inorganic phosphorus removal by cultured periphyton. Lu, Haiying,Yang, Linzhang,Shabbir, Sadaf,Wu, Yonghong,Yang, Linzhang,Shabbir, Sadaf.

[6]"Black is the new green": the blue shades of biochar. Rai S. Kookana,Xiang-Yang Yu,Guang-Guo Ying. 2011

[7]Effects of straw addition on increased greenhouse vegetable yield and reduced antibiotic residue in fluvo-aquic soil. Wang Xiu-bin,Li Chun-hua,Huang Shao-wen,Tang Ji-wei,Jin Ji-yun,Gao Wei. 2015

[8]Preparation and Degradation of Seedling Containers Made from Straw and Hydrolyzed Soy Protein Isolate Modified Urea-Formaldehyde Resins. Qu, Ping,Zhao, Yongfu,Jiang, Xizhi,Qu, Ping,Huang, Hongying,Wu, Guofeng,Chang, Zhizhou. 2015

[9]Comparative Analysis of Single-stage and Two-stage Fermentation Systems under Various Process Conditions. Qian, Yuting,Xi, Yonglan,Huang, Hongying,Jin, Hongmei,Xu, Yueding,Chang, Zhizhou,Qu, Haoli,Du, Jing,Lu, Xiwu. 2017

[10]Bioremediation of Wastewater by Iron Oxide-Biochar Nanocomposites Loaded with Photosynthetic Bacteria. He, Shiying,Duan, Jingjing,Feng, Yanfang,Yang, Bei,Yang, Linzhang,Zhong, Linghao. 2017

[11]Effects of biochar application on Suaeda salsa growth and saline soil properties. Sun, Junna,He, Fuhong,Zhang, Zhenhua,Shao, Hongbo,Shao, Hongbo,Xu, Gang. 2016

[12]Biochar characteristics produced from rice husks and their sorption properties for the acetanilide herbicide metolachlor. Huang, Yufen,Li, Yanliang,Huang, Lianxi,Huang, Qing,Liu, Zhongzhen,Wei, Lan,Huang, Yufen,Li, Yanliang,Huang, Lianxi,Huang, Qing,Liu, Zhongzhen,Mar, Nyo Nyo.

[13]Controlled-release fertilizer, floating duckweed, and biochar affect ammonia volatilization and nitrous oxide emission from rice paddy fields irrigated with nitrogen-rich wastewater. Sun, Haijun,Sun, Haijun,Min, Ju,Feng, Yanfang,Shi, Weiming,Zhang, Hailin,Feng, Yanfang.

[14]Temperature and moisture responses to carbon mineralization in the biochar-amended saline soil. Sun, Junna,He, Fuhong,Zhang, Zhenhua,Shao, Hongbo,Shao, Hongbo,Xu, Gang.

[15]Biochar applied at an appropriate rate can avoid increasing NH3 volatilization dramatically in rice paddy soil. Feng, Yanfang,Xue, Lihong,Gao, Qian,Yang, Linzhang,Feng, Yanfang,Sun, Haijun,Sun, Haijun,Liu, Yang,Lu, Kouping.

[16]Pyrolysis temperature affects phosphorus transformation in biochar: Chemical fractionation and P-31 NMR analysis. Xu, Gang,Zhang, You,Shao, Hongbo,Sun, Junna,Shao, Hongbo,Sun, Junna,Zhang, You.

[17]Negative interactive effects between biochar and phosphorus fertilization on phosphorus availability and plant yield in saline sodic soil. Xu, Gang,Zhang, You,Sun, Junna,Shao, Hongbo,Shao, Hongbo,Sun, Junna,Zhang, You.

[18]Biochar pyrolytically produced from municipal solid wastes for aqueous As(V) removal: Adsorption property and its improvement with KOH activation. Jin, Hongmei,Chang, Zhizhou,Xu, Yueding,Zhang, Jianying,Jin, Hongmei,Chang, Zhizhou,Xu, Yueding,Zhang, Jianying,Jin, Hongmei,Capareda, Sergio,Gao, Jun.

[19]Biochar applied with appropriate rates can reduce N leaching, keep N retention and not increase NH3 volatilization in a coastal saline soil. Sun, Haijun,Chu, Lei,Lu, Haiying,Shao, Hongbo,Shi, Weiming.

[20]Suppression of Chlorantraniliprole Sorption on Biochar in Soil-Biochar Systems. Wang, Ting-Ting,Lu, Meng-Xiao,Liu, Xian-Jin,Yu, Xiang-Yang,Li, Yi-Song,Jiang, Alice C..

作者其他论文 更多>>