Automatic detection of defective apples using NIR coded structured light and fast lightness correction
文献类型: 外文期刊
作者: Zhang, Chi 1 ; Zhao, Chunjiang 1 ; Huang, Wenqian 1 ; Wang, Qingyan 1 ; Liu, Shenggen 1 ; Li, Jiangbo 1 ; Guo, Zhiming 1 ;
作者机构: 1.Beijing Res Ctr Intelligent Equipment Agr, Beijing 100097, Peoples R China
关键词: Machine vision;Defect detection;Stem-end/calyx identification;NIR structured light;Lightness correction
期刊名称:JOURNAL OF FOOD ENGINEERING ( 影响因子:5.354; 五年影响因子:5.144 )
ISSN:
年卷期:
页码:
收录情况: SCI
摘要: The automated detection of defective apples with a machine vision system is difficult because of the non-uniform intensity distribution on the apple images and the visual similarity between the stem-ends/calyx and the defects. This paper presents a novel method to recognise defective apples by using a machine vision system that combines near-infrared(NIR) coded spot-array structured light and fast lightness correction. By analysing the imaging principle of the spots projected onto the surface of a spherical object, we regard the change in the position of the spots as a coded primitive. A binary-encoded M-array is designed by using primitives as the pattern of the NIR structured light. The stem-ends/calyxes can be identified by analysing a difference matrix from the NIR apple image captured With a multi spectral camera. Fast lightness correction is performed to convert the uneven lightness distribution on the apple surface into a uniform lightness distribution over the whole fruit surface. The candidate defective regions segmented and extracted from the RGB apple image captured with the same multi spectral camera are classified as the true defects or the stem-ends/calyxes by using the result of the stem-end/calyx identification in the NIR image. The apples are finally classified into sound and defective classes according to the existence or absence of defects respectively. The online experimental result with an average overall recognition accuracy of 90.2% for three apple varieties indicates that the proposed method is effective and suitable for defective apple detection. (C) 2017 Elsevier Ltd. All rights reserved.
- 相关文献
作者其他论文 更多>>
-
Determination of the SSC in oranges using Vis-NIR full transmittance hyperspectral imaging and spectral visual coding: A practical solution to the scattering problem of inhomogeneous mixtures
作者:Cai, Letian;Li, Jiangbo;Zhang, Yizhi;Hao, Haoyuan;Cai, Letian;Zhang, Junyi;Zhang, Hailiang;Zhang, Yizhi
关键词:Citrus; SSC detection; Hyperspectral transmittance imaging; Spectral visual coding; Feature selection
-
Recognition of maize seedling under weed disturbance using improved YOLOv5 algorithm
作者:Tang, Boyi;Zhao, Chunjiang;Tang, Boyi;Zhou, Jingping;Pan, Yuchun;Qu, Xuzhou;Cui, Yanglin;Liu, Chang;Li, Xuguang;Zhao, Chunjiang;Gu, Xiaohe;Li, Xuguang
关键词:Object detection; Maize seedlings; UAV RGB images; YOLOv5; Attention mechanism
-
Hyperspectral transmittance imaging detection of early decayed oranges caused by Penicillium digitatum using NFINDR-JMSAM algorithm with spectral feature separating
作者:Cai, Letian;Chen, Liping;Li, Xuetong;Zhang, Yizhi;Shi, Ruiyao;Li, Jiangbo;Cai, Letian
关键词:Citrus; Decay detection; Hyperspectral transmittance imaging; NFINDR-JMSAM; Spectral separation
-
Construction of a stable YOLOv8 classification model for apple bruising detection based on physicochemical property analysis and structured-illumination reflectance imaging
作者:Zhang, Junyi;Chen, Liping;Cai, Zhonglei;Shi, Ruiyao;Cai, Letian;Li, Jiangbo;Zhang, Junyi;Luo, Liwei;Yang, Xuhai;Li, Jiangbo
关键词:Apple; Bruising detection; Physicochemical property analysis; Structured-illumination reflectance imaging; Deep learning model
-
Boosting Cost-Efficiency in Robotics: A Distributed Computing Approach for Harvesting Robots
作者:Xie, Feng;Xie, Feng;Li, Tao;Feng, Qingchun;Li, Tao;Feng, Qingchun;Chen, Liping;Zhao, Chunjiang;Zhao, Hui
关键词:5G network; computation allocation; edge computing; harvesting robot; visual system
-
Genotyping Identification of Maize Based on Three-Dimensional Structural Phenotyping and Gaussian Fuzzy Clustering
作者:Xu, Bo;Zhao, Chunjiang;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao
关键词:tassel; 3D phenotyping; TreeQSM; genotyping; clustering
-
High-throughput phenotyping techniques for forage: Status, bottleneck, and challenges
作者:Cheng, Tao;Zhang, Dongyan;Cheng, Tao;Wang, Zhaoming;Zhang, Dongyan;Zhang, Gan;Yuan, Feng;Liu, Yaling;Wang, Tianyi;Ren, Weibo;Zhao, Chunjiang
关键词:Forage; High-throughput phenotyping; Precision identification; Sensors; Artificial intelligence; Efficient breeding



