您好,欢迎访问中国水产科学研究院 机构知识库!

Effects of dietary linolenic acid on growth, fatty acid composition, immune function and antioxidant status of juvenile blunt snout bream, Megalobrama amblycephala

文献类型: 外文期刊

作者: Zhang, Wuxiao 1 ; Sun, Shengming 1 ; Ge, Xianping 1 ; Xia, Silei 1 ; Zhu, Jian 1 ; Miao, Linghong 1 ; Lin, Yan 1 ; Liang, 1 ;

作者机构: 1.Nanjing Agr Univ, Wuxi Fisheries Coll, Wuxi, Peoples R China

2.Chinese Acad Fishery Sci, Freshwater Fisheries Res Ctr, Key Lab Freshwater Fisheries & Germplasm Resource, Minist Agr, Wuxi, Peoples R China

3.Chinese Acad Fishery Sci, Freshwater Fisheries Res Ctr, Key Lab Freshwater Fisheries & Germplasm Resou

关键词: antioxidant enzymes;biochemical parameters;fatty acid composition;growth performance;linolenic acid;Megalobrama amblycephala

期刊名称:AQUACULTURE RESEARCH ( 影响因子:2.082; 五年影响因子:2.415 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: A nine-week feeding trial was performed to determine the dietary linolenic acid (LNA; 18:3n-3) requirements of juvenile blunt snout bream. Six iso-nitrogenous, semi-purified diets were prepared with different concentrations of LNA (0-25g/kg). Dietary LNA had no significant effects on survival rate. However, final fish weight, weight gain (WG), specific growth rate (SGR) and feed efficiency ratio (FER) increased with increasing dietary LNA concentrations up to 20g/kg. Dietary LNA increased muscle LNA and total n-3 polyunsaturated fatty acid (PUFA) contents, but decreased total saturated fatty acid content. Fish fed 20g/kg LNA had the highest plasma alkaline phosphatase activity, total protein, albumin and white blood cell count levels. Additionally, fish fed 20g/kg LNA had higher triglyceride levels than control fish. Plasma glucose increased with increasing dietary LNA concentrations. Superoxide dismutase and glutathione peroxidase activities significantly increased with increasing dietary LNA concentrations up to 15g/kg. Based on SGR and FER, the optimal dietary LNA requirements of juvenile blunt snout bream were 17.5 and 15.6g/kg respectively.

  • 相关文献

[1]Dietary threonine requirement of juvenile blunt snout bream (Megalobrama amblycephala). Habte-Tsion, Habte-Michael,Liu, Bo,Ren, Mingchun,Ge, Xianping,Xie, Jun,Zhou, Qunlan,Liu, Bo,Ren, Mingchun,Ge, Xianping,Xie, Jun,Zhou, Qunlan,Miao, Linghong,Pan, Liangkun,Chen, Ruli.

[2]The effect of dietary bamboo charcoal supplementation on growth and serum biochemical parameters of juvenile common carp (Cyprinus carpio L.). Mabe, Lerato Tshepiso,Tang, Dan,Dong, Zaijie,Su, Shengyan,Zhu, Wenbin,Dong, Zaijie,Wang, Sunguo. 2018

[3]Effects of dietary chlorogenic acid on growth performance, antioxidant capacity of white shrimp Litopenaeus vannamei under normal condition and combined stress of low-salinity and nitrite. Wang, Yun,Duan, Ya-Fei,Niu, Jin,Wang, Jun,Huang, Zhong,Lin, Hei-Zhao,Li, Zheng,Li, Jian.

[4]Effects of dietary Rhodiola rosea on growth, body composition and antioxidant capacity of white shrimp Litopenaeus vannamei under normal conditions and combined stress of low-salinity and nitrite. Wang, Y.,Niu, J.,Wang, J.,Wang, Y.,Duan, Y. -F.,Huang, Z.,Lin, H. -Z.,Liang, J. -P..

[5]Fasted and postprandial response of serum physiological response, hepatic antioxidant abilities and HSP70 expression in Wuchang bream (Megalobrama amblycephala) fed different dietary carbohydrate levels. Zhou, Chuanpeng,Ge, Xianping,Liu, Bo,Xie, Jun,Chen, Ruli,Zhou, Chuanpeng. 2014

[6]Determination of optimal fasting time before blood sampling to get baseline data on serum biochemical characteristics in juvenile turbot (Scophthalmus maximus). Jia, Yudong,Huang, Bin,Gao, Yunhong,Chen, Xiatian. 2018

[7]Differences in muscle cellularity and flesh quality between wild and farmed Coilia nasus (Engraulidae). Tang, Xue,Xu, Gangchun,Xu, Pao,Gu, Ruobo,Tang, Xue,Dai, Hui,Zhang, Chengxiang. 2012

[8]Threonine influences the absorption capacity and brush-border enzyme gene expression in the intestine of juvenile blunt snout bream (Megalobrama amblycephala). Habte-Tsion, Habte-Michael,Ren, Mingchun,Liu, Bo,Ge, Xianping,Xie, Jun,Zhou, Qunlan,Ren, Mingchun,Liu, Bo,Ge, Xianping,Xie, Jun,Chen, Ruli,Zhou, Qunlan,Pan, Liangkun,Habte-Tsion, Habte-Michael.

[9]Effects of emodin and vitamin E on the growth and crowding stress of Wuchang bream (Megalobrama amblycephala). Liu, Bo,Xu, Pao,Xie, Jun,Ge, Xianping,Zhou, Qunlan,Miao, Linghong,Ren, Mingchun,Pan, Liangkun,Chen, Ruli,Liu, Bo,Xu, Pao,Xie, Jun,Ge, Xianping,Xia, Silei,Song, Changyou.

[10]Molecular cloning, immunohistochemical localization, characterization and expression analysis of caspase-8 from the blunt snout bream (Megalobrama amblycephala) exposed to ammonia. Sun, Shengming,Ge, Xianping,Zhu, Jian,Zhang, Wuxiao,Zhang, Qiong.

[11]Ghrelin, neuropeptide Y (NPY) and cholecystokinin (CCK) in blunt snout bream (Megalobrama amblycephala): cDNA cloning, tissue distribution and mRNA expression changes responding to fasting and refeeding. Ji, Wei,Ping, Hai-Chao,Wei, Kai-Jian,Zhang, Gui-Rong,Yang, Rui-Bin,Wang, Wei-Min,Ji, Wei,Wei, Kai-Jian,Zhang, Gui-Rong,Yang, Rui-Bin,Shi, Ze-Chao,Zou, Gui-Wei.

[12]Comparison Study of the Effects of Anthraquinone Extract and Emodin from Rheum officinale Bail on the Physiological Response, Disease Resistance of Megalobrama amblycephala under High Temperature Stress. Liu, Bo,Xie, Jun,Ge, Xianping,Xu, Pao,Liu, Bo,Xie, Jun,Ge, Xianping,Xu, Pao,Miao, Linghong,Zhou, Qunlan,Pan, Liangkun,Chen, Ruli.

[13]Bioinformatic prediction and analysis of glucolipid metabolic regulation by miR-34a in Megalobrama amblycephala. Miao, Ling-Hong,Pan, Wen-Jing,Ge, Xian-Ping,Miao, Ling-Hong,Lin, Yan,Ge, Xian-Ping,Liu, Bo,Ren, Ming-Chun,Zhou, Qun-Lan,Miao, Ling-Hong,Pan, Wen-Jing,Lin, Yan,Ge, Xian-Ping,Liu, Bo,Ren, Ming-Chun,Zhou, Qun-Lan.

[14]Molecular characterization and expression patterns of myogenin in compensatory growth of Megalobrama amblycephala. Zhu, Kecheng,Chen, Liping,Zhao, Jinkun,Wang, Huijuan,Wang, Weimin,Wang, Huanling,Zhu, Kecheng,Zhao, Jinkun,Wang, Huijuan,Wang, Weimin,Wang, Huanling,Li, Zhong.

[15]The effect of hyperthermia on liver histology, oxidative stress and disease resistance of the Wuchang bream, Megalobrama amblycephala. Liu, Bo,Xu, Pao,Xie, Jun,Ge, Xianping,Miao, Linghong,Zhou, Qunlan,Ren, Mingchun,Pan, Liangkun,Brown, Paul B..

[16]Identification of Differentially Expressed Micrornas Associate with Glucose Metabolism in Different Organs of Blunt Snout Bream (Megalobrama amblycephala). Miao, Ling-Hong,Pan, Wen-Jing,Huang, Xin,Ge, Xian-Ping,Liu, Bo,Miao, Ling-Hong,Lin, Yan,Ge, Xian-Ping,Ren, Ming-Chun,Zhou, Qun-Lan,Liu, Bo. 2017

[17]Morphological analysis and muscle-associated gene expression during different muscle growth phases of Megalobrama amblycephala. Zhu, K. C.,Zhao, J. K.,Wang, W. M.,Wang, H. L.,Zhu, K. C.,Yu, D. H.,Wang, W. M.,Wang, H. L.. 2015

[18]Molecular cloning and expression of two HSP70 genes in the Wuchang bream (Megalobrama amblycephala Yih). Ming, Jianhua,Xie, Jun,Xu, Pao,Ge, Xianping,Liu, Bo,He, Yijin,Cheng, Yanfen,Zhou, Qunlan,Pan, Liangkun,Ming, Jianhua,Liu, Wenbin. 2010

[19]Molecular cloning and expression analysis of two beta-defensin genes in the blunt snout bream (Megalobrama amblycephala). Liang, Tao,Wang, Dan-Dan,Zhang, Gui-Rong,Wei, Kai-Jian,Wang, Wei-Min,Liang, Tao,Wang, Dan-Dan,Zhang, Gui-Rong,Wei, Kai-Jian,Zou, Gui-Wei. 2013

[20]Effects of Dietary Emodin Supplementation on Growth Performance, Non-Specific Immune Responses, and Disease Resistance to Aeromonas hydrophila in Juvenile Wuchang Bream (Megalobrama amblycephala). Zhang, Yuan-yuan,Liu, Bo,Ge, Xian-ping,Xie, Jun,Cui, Yan-ting,Zhang, Yuan-yuan,Liu, Bo,Ge, Xian-ping,Xie, Jun,Ren, Ming-chun,Zhou, Qun-lan,Sun, Sheng-ming,Cui, Yan-ting,Chen, Ru-li,Pan, Liang-kun,Zhang, Yuan-yuan,Liu, Wen-bin. 2014

作者其他论文 更多>>