您好,欢迎访问河北省农林科学院 机构知识库!

An effective field screening method for flood tolerance in soybean

文献类型: 外文期刊

作者: Wu, Chengjun 1 ; Zeng, Ailan 1 ; Chen, Pengyin 1 ; Florez-Palacios, Liliana 1 ; Hummer, Wade 1 ; Mokua, Jane 1 ; Klepa 1 ;

作者机构: 1.Univ Arkansas, Dept Crop Soil & Environm Sci, Fayetteville, AR 72701 USA

2.Hebei Acad Agr & Forestry Sci, Inst Cereal & Oil Crops, Shijiazhuang, Hebei, Peoples R China

3.South China Agr Univ, Coll Agr, Guangzhou, Guangdong, Peoples R China

4.Univ Missouri, Div Plant Sci, Delta Ctr, Portageville, MO USA

关键词: flooding duration;flooding tolerance;foliar damage score;plant survival rate;soybean

期刊名称:PLANT BREEDING ( 影响因子:1.832; 五年影响因子:1.956 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Flooding is an abiotic stress that causes considerable reductions in crop growth and yield worldwide. Soybean (Glycine max [L.] Merr.) cultivars are generally sensitive to flooding stress. The objective of this study was to develop an effective flooding tolerance screening method in the field. A total of 40 soybean genotypes were evaluated for flooding tolerance at V5 and R1 growth stages. At each stage, genotypes were exposed to different durations of flooding stress (3, 6, 9, 12 and 15days). Plant foliar damage score (FDS) and plant survival rate (PSR) were used as the indicators of flooding tolerance. Soybeans were more sensitive to flooding at R1 growth stage than V5 growth stage. Length of flooding duration accounted for the variance of FDS and PSR. Soybean genotypes exposed to a 3-day flooding in either V5 or R1 growth stage, did not show obvious foliar damage, while genotypes exposed to a 12- or 15-day flooding showed significant foliar damage and plant death. The optimum flooding duration to screen for flooding tolerance in the field was determined to be 9 and 6days for V5 and R1 growth stages, respectively, as distinguishable responses to flooding allowed genotypes to be classified as either being flooding tolerant or flooding sensitive. High correlation between FDS and PSR (.99, p<.0001) was observed. Similarly, FDS and PSR were highly correlated with grain yield (.95 and .95, p<.0001). The field screening method for flooding tolerance developed in our study will be favourable for selection of soybean flooding-tolerant germplasm.

  • 相关文献

[1]Stability of growth periods traits for soybean cultivars across multiple locations. Liu Zhang-xiong,Chang Ru-zhen,Qiu Li-juan,Wang Xiao-bo,Yang Chun-yan,Xu Ran,Zhang Li-feng,Lu Wei-guo,Wang Qian,Wei Su-hong,Yang Chun-ming,Wang Hui-cai,Wang Rui-zhen,Zhou Rong,Chen Huai-zhu. 2016

[2]QTL Mapping of Isoflavone, Oil and Protein Contents in Soybean (Glycine max L. Merr.). Liang Hui-zhen,Yu Yong-liang,Wang Shu-feng,Lian Yun,Wang Ting-feng,Wei Yan-li,Gong Peng-tao,Fang Xuan-jun,Liu Xue-yi,Zhang Meng-chen. 2010

[3]Molecular footprints of domestication and improvement in soybean revealed by whole genome re-sequencing. Li, Ying-hui,Yan, Long,Qi, Xiao-tian,Zhang, Le,Chang, Ru-zhen,Guo, Yong,Wang, Xiao-bo,Guan, Rong-xia,Liu, Yu-lin,Jin, Long-guo,Liu, Zhang-xiong,Zhang, Li-juan,Wang, Ke-jing,Qiu, Li-juan,Zhao, Shan-cen,Li, Dong,Li, Jun,Guo, Xiao-sen,He, Wei-ming,Liang, Qin-si,Ye, Chen,Tao, Yong,Wang, Jun-yi,Zhang, Xiu-qing,Chen, Jie,Nielsen, Rasmus,Li, Rui-qiang,Wang, Jian,Wang, Jun,Ma, Jian-xin,Yan, Long,Zhang, Meng-chen,Tao, Yong,Nielsen, Rasmus,Wang, Jun,Wang, Jun-yi,Nielsen, Rasmus,Nielsen, Rasmus,Chen, Peng-yin,Li, Wen-bin,Reif, Jochen C.,Purugganan, Michael,Purugganan, Michael. 2013

[4]Diversity of rhizosphere bacteria associated with different soybean cultivars in two soil conditions. Wang, Hao,Wang, Shao Dong,Wang, Hao,Wang, Shao Dong,Jiang, Yan,Chen, Wen Xin,Zhao, Shuang Jin. 2014

[5]Characterization of Genetic Basis on Synergistic Interactions between Root Architecture and Biological Nitrogen Fixation in Soybean. Yang, Yongqing,Yang, Yongqing,Li, Xinxin,Ai, Wenqin,Liu, Dong,Qi, Wandong,Liao, Hong,Zhao, Qingsong,Zhang, Mengchen,Yang, Chunyan,Ai, Wenqin,Liu, Dong,Qi, Wandong. 2017

[6]Identification of QTL with large effect on seed weight in a selective population of soybean with genome-wide association and fixation index analyses. Yan, Long,Hofmann, Nicolle,Quigley, Charles,Fickus, Edward,Cregan, Perry,Song, Qijian,Li, Shuxian,Ferreira, Marcio Elias,Song, Baohua,Jiang, Guoliang,Ren, Shuxin,Hofmann, Nicolle. 2017

[7]Proteomic analysis of elite soybean Jidou17 and its parents using iTRAQ-based quantitative approaches. Qin, Jun,Gu, Feng,Zhao, Shuangjin,Yang, Chunyan,Zhang, Mengchen,Liu, Duan,Chen, Hao,Zhan, Xu,Yin, Changcheng,Zhang, Jianan. 2013

[8]Genetic contribution of foreign germplasm to elite Chinese soybean (Glycine max) cultivars revealed by SSR markers. Qin Jun,Chen Weiyuan,Guan Rongxia,Jiang Chengxi,Li Yinghui,Fu Yashu,Liu Zhangxiong,Zhang Mengchen,Chang Ruzhen,Qiu Lijuan. 2006

[9]Inhibition of isoflavone biosynthesis enhanced T-DNA delivery in soybean by improving plant-Agrobacterium tumefaciens interaction. Zhang, Yan-Min,Zhang, Hong-Mei,Liu, Zi-Hui,Guo, Xiu-Lin,Li, Hui-Cong,Li, Guo-Liang,Jiang, Chun-Zhi,Zhang, Meng-Chen.

[10]Improvement of soybean transformation via Agrobacterium tumefaciens methods involving alpha-aminooxyacetic acid and sonication treatments enlightened by gene expression profile analysis. Zhang, Yan-Min,Liu, Zi-Hui,Yang, Rui-Juan,Li, Guo-Liang,Guo, Xiu-Lin,Zhang, Hua-Ning,Zhang, Hong-Mei,Di, Rui,Zhao, Qing-Song,Zhang, Meng-Chen.

[11]Validation of the quantitative trait locus underlying soybean plant height using residual heterozygous lines and near-isogenic lines across multi-environments. Yan, Long,Zhang, Yuanyuan,Yang, Chunyan,Chen, Qiang,Liu, Bingqiang,Di, Rui,Zhang, Mengchen,Yan, Long,Song, Qijian,Cregan, Perry B.,An, Yongqiang Charles,Wu, Chengjun.

[12]iTRAQ-based analysis of developmental dynamics in the soybean leaf proteome reveals pathways associated with leaf photosynthetic rate. Qin, Jun,Wang, Fengmin,Zhang, Mengchen,Xu, Jin,Zhang, Jianan,Liu, Duan,Yin, Changcheng,Chen, Hao,Chen, Pengyin,Qin, Jun,Ma, Jinbing,Zhang, Bo.

作者其他论文 更多>>