您好,欢迎访问北京市农林科学院 机构知识库!

Detection of the Freshness State of Cooked Beef During Storage Using Hyperspectral Imaging

文献类型: 外文期刊

作者: Yang, Dong 1 ; He, Dandan 2 ; Lu, Anxiang 2 ; Ren, Dong 2 ; Wang, Jihua 1 ;

作者机构: 1.Shenyang Agr Univ, Coll Informat & Elect Engn, Shenyang, Liaoning, Peoples R China

2.Collaborat Innovat Ctr Key Technol Smart Irrigat, Yichang, Hubei, Peoples R China

3.Beijing Acad Agr & Forestry Sci, Beijing Res Ctr Agr Stand & Testing, Beijing, Peoples R China

4.Beijing Municipal Key Lab Agr Environm Monitoring, Beijing, Peoples R China

关键词: Hyperspectral imaging;total viable count;classification model;identification-contaminated area;cooked beef

期刊名称:APPLIED SPECTROSCOPY ( 影响因子:2.388; 五年影响因子:2.296 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要:

The freshness of meat products during storage has received unprecedented attention. This study was conducted to investigate the feasibility of a hyperspectral imaging (HSI) technique to determine the freshness state of cooked beef during storage and identify the contaminated areas on the surface of spoiled samples. Hyperspectral images of cooked beef were acquired in the wavelength range of 400–1000?nm and the freshness state of all samples was divided into three classes (freshness, medium freshness, and spoilage) using the measured total viable count (TVC) of bacteria. Fifteen feature spectra variables were extracted by random frog (RF); based on this, six optimal wavelength variables were further selected by correlation analysis (CA). Partial least squares (PLS) and least squares–support vector machine (LS-SVM) classification models were established using different spectral variables. The results indicated that the performance of the RF-CA-LS-SVM classification model with a high overall classification accuracy of 97.14%, the results of sensitivity and specificity in the range of 0.92–1, and the κ coefficient of 0.9575 in the prediction set were obviously superior to other models. Spoiled samples were further obtained using a RF-CA-LS-SVM model, and then six feature images were extracted and further fused by principal component analysis (PCA). A PC3 image was used to segment successfully the contaminated areas from normal areas of cooked beef images using the Otsu threshold algorithm. The results demonstrated that HSI has great potential in classifying the freshness of cooked beef and identifying the contaminated areas. This current study provides a foundational basis for the classification and grading of meat production in further online detection.

  • 相关文献

[1]Combination of spectral and textural information of hyperspectral imaging for the prediction of the moisture content and storage time of cooked beef. Yang, Dong,Lu, Anxiang,Wang, Jihua,Yang, Dong,Wang, Jihua,He, Dandan,Lu, Anxiang,Ren, Dong,Wang, Jihua,Lu, Anxiang,Wang, Jihua. 2017

[2]Rapid determination of biogenic amines in cooked beef using hyperspectral imaging with sparse representation algorithm. Yang, Dong,Lu, Anxiang,Wang, Jihua,Yang, Dong,Wang, Jihua,Lu, Anxiang,Ren, Dong,Wang, Jihua,Lu, Anxiang,Wang, Jihua. 2017

[3]Classification model of Increment Changes of Geographical Object Based on Multifold state difference. Zhu Huaji,Wu Huarui,Sun Xiang,Ma Shaojuan. 2009

[4]Detection of Early Rottenness on Apples by Using Hyperspectral Imaging Combined with Spectral Analysis and Image Processing. Zhang, Baohua,Fan, Shuxiang,Li, Jiangbo,Huang, Wenqian,Zhao, Chunjiang,Qian, Man,Zheng, Ling,Zhang, Baohua,Zhao, Chunjiang.

[5]Prediction of soluble solids content of apple using the combination of spectra and textural features of hyperspectral reflectance imaging data. Fan, Shuxiang,Zhang, Baohua,Li, Jiangbo,Liu, Chen,Huang, Wenqian,Tian, Xi,Fan, Shuxiang,Zhang, Baohua,Li, Jiangbo,Liu, Chen,Huang, Wenqian,Tian, Xi,Fan, Shuxiang,Zhang, Baohua,Li, Jiangbo,Liu, Chen,Huang, Wenqian,Tian, Xi,Fan, Shuxiang,Zhang, Baohua,Li, Jiangbo,Liu, Chen,Huang, Wenqian,Tian, Xi.

[6]Multispectral detection of skin defects of bi-colored peaches based on vis-NIR hyperspectral imaging. Li, Jiangbo,Chen, Liping,Huang, Wenqian,Wang, Qingyan,Zhang, Baohua,Tian, Xi,Li, Bin,Li, Jiangbo,Chen, Liping,Huang, Wenqian,Wang, Qingyan,Tian, Xi,Fan, Shuxiang,Li, Bin,Li, Jiangbo,Chen, Liping,Huang, Wenqian,Li, Jiangbo,Chen, Liping,Huang, Wenqian.

[7]Development of a multispectral imaging system for online detection of bruises on apples. Huang, Wenqian,Li, Jiangbo,Wang, Qingyan,Chen, Liping.

[8]Prediction of Soluble Solids Content and Firmness of Pears Using Hyperspectral Reflectance Imaging. Fan, Shuxiang,Huang, Wenqian,Guo, Zhiming,Zhang, Baohua,Zhao, Chunjiang,Fan, Shuxiang,Zhao, Chunjiang.

[9]Hyperspectral classification for identifying decayed oranges infected by fungi. Yin, Shiyang,Gu, Xiaomin,Xiao, Yong,Bi, Xiaoqing,Niu, Yong. 2017

[10]Vertical features of yellow rust infestation on winter wheat using hyperspectral imaging measurements. Zhao, Jinling,Zhang, Dongyan,Huang, Linsheng,Zhang, Qing,Liu, Wenjing,Yang, Hao. 2016

[11]Detection of Wheat Powdery Mildew by Differentiating Background Factors using Hyperspectral Imaging. Zhang, Dongyan,Zhang, Lifu,Zhang, Dongyan,Wang, Xiu,Zhang, Dongyan,Wang, Xiu,Lin, Fenfang,Huang, Yanbo. 2016

[12]Geographical classification of apple based on hyperspectral imaging. Guo, Zhiming,Huang, Wenqian,Chen, Liping,Zhao, Chunjiang. 2013

[13]Recognition of wheat preharvest sprouting based on hyperspectral imaging. Wu, Qiong,Wang, Jihua,Wu, Qiong,Zhu, Dazhou,Wang, Cheng,Ma, Zhihong,Wang, Jihua. 2012

[14]Identification of seedling cabbages and weeds using hyperspectral imaging. Wei, Deng,Zhao Chunjiang,Xiu, Wang,Huang, Yanbo,Wei, Deng,Zhao Chunjiang,Xiu, Wang,Wei, Deng,Zhao Chunjiang,Xiu, Wang,Wei, Deng,Zhao Chunjiang,Xiu, Wang. 2015

[15]HYPERSPECTRAL IMAGE FOR DISCRIMINATING APHID AND APHID DAMAGE REGION OF WINTER WHEAT LEAF. Luo Juhua,Huang Wenjiang,Guan Qingsong,Zhao Jinling,Zhang Jingcheng. 2013

[16]Effectively Predicting Soluble Solids Content in Apple Based on Hyperspectral Imaging. Huang Wen-qian,Li Jiang-bo,Chen Li-ping,Guo Zhi-ming. 2013

[17]Identification of Wheat Cultivars Based on the Hyperspectral Image of Single Seed. Zhu, Dazhou,Wang, Cheng,Wu, Qiong,Zhao, Chunjiang,Pang, Binshuang,Shan, Fuhua. 2012

[18]Comparative analysis of models for robust and accurate evaluation of soluble solids content in 'Pinggu' peaches by hyperspectral imaging. Chen, Liping. 2017

[19]Machine vision technology for detecting the external defects of fruits - a review. Li, J. B.,Huang, W. Q.,Zhao, C. J.. 2015

[20]Measuring the Moisture Content in Maize Kernel Based on Hyperspctral Image of Embryo Region. Tian Xi,Huang Wen-qian,Li Jiang-bo,Fan Shu-xiang,Zhang Bao-hua,Tian Xi,Huang Wen-qian,Li Jiang-bo,Fan Shu-xiang,Zhang Bao-hua,Tian Xi,Huang Wen-qian,Li Jiang-bo,Fan Shu-xiang,Zhang Bao-hua,Tian Xi,Huang Wen-qian,Li Jiang-bo,Fan Shu-xiang,Zhang Bao-hua. 2016

作者其他论文 更多>>