您好,欢迎访问北京市农林科学院 机构知识库!

The influence of particle size and feedstock of biochar on the accumulation of Cd, Zn, Pb, and As by Brassica chinensis L.

文献类型: 外文期刊

作者: Zheng, Ruilun 1 ; Li, Cui 1 ; Sun, Guoxin 2 ; Xie, Zubin 3 ; Chen, Jie 1 ; Wu, Juying 1 ; Wang, Qinghai 1 ;

作者机构: 1.Beijing Acad Agr & Forestry Sci, Res & Dev Ctr Grasses & Environm, Beijing 100097, Peoples R China

2.Chinese Acad Sci, Res Ctr Ecoenvironm Sci, State Key Lab Urban & Reg Ecol, Beijing 100085, Peoples R China

3.Chinese Acad Sci, Jiangsu Biochar Engn Ctr, State Key Lab Soil & Sustainable Agr, Nanjing 210008, Jiangsu, Peoples R China

关键词: Heavy metal;Biochar;Particle size;Accumulation;Brassica chinensis L

期刊名称:ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH ( 影响因子:4.223; 五年影响因子:4.306 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Biochar produced from rice straw (RC) and maize stalk (MC) was amended to the heavy metal-contaminated soil to investigate the effects of different biochar feedstock and particle size (fine, moderate, coarse) on the accumulation of Cd, Zn, Pb, and As in Brassica chinensis L. (Chinese cabbage). The concentrations of Cd, Zn, and Pb in shoot were decreased by up to 57, 75, and 63%, respectively, after biochar addition (4%). Only MC decreased As concentration in B. chinensis L. shoots by up to 61%. Biochar treatments significantly decreased NH4NO3-extractable concentrations of Cd, Zn, and Pb in soil by 47-62, 33-66, and 38-71%, respectively, yet increased that of As by up to 147%. Amendment of RC was more effective on immobilizing Cd, Zn, and Pb, but mobilizing soil As, than MC. A decrease in biochar particle size greatly contributed to the immobilization of Cd, Zn, and Pb in soil and thereby the reduction of their accumulations in B. chinensis L. shoots, especially RC. Increases in soil pH and extractable P induced by biochar addition contributed to the sequestration of Cd, Zn, and Pb and the mobilization of As. Shoot biomass, root biomass, and root system of B. chinensis L. were enhanced with biochar amendments, especially RC. This study indicates that biochar addition could potentially decrease Cd, Zn, Pb, and As accumulations in B. chinensis L., and simultaneously increase its yield. A decrease in biochar particle size is favorable to improve the immobilization of heavy metals (except As). The reduction in Cd, Zn, Pb, and As levels in B. chinensis L. shoots by biochar amendment could be mainly attributed to a function of heavy metal mobility in soil, plant translocation factor, and root uptake.

  • 相关文献

[1]Effect of Biochars from Rice Husk, Bran, and Straw on Heavy Metal Uptake by Pot-Grown Wheat Seedling in a Historically Contaminated Soil. Zheng, Ruilun,Xiao, Bo,Chen, Zheng,Wang, Xiaohui,Huang, Yizong,Sun, Guoxin,Cai, Chao. 2013

[2]Effects of biochar on nitrogen transformation and heavy metals in sludge composting. Liu, Wei,Huo, Rong,Liang, Shuxuan,Xu, Junxiang,Li, Jijin,Zhao, Tongke,Wang, Shutao.

[3]Accumulation Characteristics of Copper and Cadmium in Greenhouse Vegetable Soils In Tongzhou District Of Beijing. H. Z. Zhang,H. Li,Z. Wang. 2013

[4]Heavy metals in greenhouse vegetable soils in Beijing: accumulation characteristics of copper and cadmium. Zhang Hui-zhi,Li Hong,Wang Zhi,Zhou Lian-di. 2012

[5]Development of Soil Heavy Metal Detector Based onXRF Technology. WenshenJia,LigangPan,YaleiWang,JihuaWang. 2015

[6]Accumulation Characteristics of Copper and Cadmium in Greenhouse Vegetable Soils In Tongzhou District Of Beijing. Zhang, H. Z.,Li, H.,Wang, Z.,Zhou, L. D.. 2011

[7]Mitigating cadmium accumulation in greenhouse lettuce production using biochar. Zheng, Ruilun,Li, Cui,Wang, Qinghai,Sun, Guoxin,Reid, Brian J.,Xie, Zubin,Zhang, Bo.

[8]Enhanced and irreversible sorption of pesticide pyrimethanil by soil amended with biochars. Pan, Ligang,Yu, Xiangyang,Ying, Guangguo,Kookana, Rai S.,Ying, Guangguo,Pan, Ligang.

[9]Mitigating heavy metal accumulation into rice (Oryza sativa L.) using biochar amendment - a field experiment in Hunan, China. Zheng, Ruilun,Chen, Zheng,Sun, Guoxin,Zheng, Ruilun,Cai, Chao,Huang, Qing,Tie, Baiqing,Liu, Xiaoli,Lei, Ming,Reid, Brian J.,Baltrenaite, Edita.

[10]Which Factors Determine Metal Accumulation in Agricultural Soils in the Severely Human-Coupled Ecosystem?. Xu, Li,Cao, Shanshan,Wang, Jihua,Lu, Anxiang,Xu, Li,Cao, Shanshan,Wang, Jihua,Lu, Anxiang. 2016

[11]Determination of Cr, Zn, As and Pb in Soil by X-Ray Fluorescence Spectrometry Based on a Partial Least Square Regression Model. Lu, Anxiang,Wang, Jihua,Pan, Ligang,Lu, Anxiang,Qin, Xiangyang,Wang, Jihua,Zhu, Dazhou,Sun, Jiang. 2011

[12]Establishment and Improvement of Portable X-Ray Fluorescence Spectrometer Detection Model Based on Wavelet Transform. Li Fang,Wang Ji-hua,Li Fang,Wang Ji-hua,Lu An-xiang,Han Ping. 2015

[13]Determination of Cr, Cu, Zn, Pb and As in Soil by Field Portable X-Ray Fluorescence Spectrometry. Lu An-xiang,Wang Ji-hua,Pan Li-gang,Han Ping,Lu An-xiang,Wang Ji-hua,Pan Li-gang,Han Ping,Han Ying. 2010

[14]Modeling of Chromium, Copper, Zinc, Arsenic and Lead Using Portable X-ray Fluorescence Spectrometer Based on Discrete Wavelet Transform. Li, Fang,Lu, Anxiang,Wang, Jihua,Li, Fang,Lu, Anxiang,Wang, Jihua,Lu, Anxiang,Wang, Jihua. 2017

[15]Multivariate and geostatistical analyses of the spatial distribution and origin of heavy metals in the agricultural soils in Shunyi, Beijing, China. Lu, Anxiang,Zhang, Shuzhen,Lu, Anxiang,Wang, Jihua,Han, Ping,Qin, Xiangyang,Wang, Kaiyi.

[16]Relative influence of sediment variables on mangrove community assembly in Leizhou Peninsula, China. Liu, Jing,Ma, Keming,Qu, Laiye,Liu, Jing.

作者其他论文 更多>>