您好,欢迎访问江苏省农业科学院 机构知识库!

Thymol Ameliorates Cadmium-Induced Phytotoxicity in the Root of Rice (Oryza sativa) Seedling by Decreasing Endogenous Nitric Oxide Generation

文献类型: 外文期刊

作者: Wang, Ting-Ting 1 ; Shi, Zhi Qi 1 ; Hu, Liang-Bin 3 ; Xu, Xiao-Feng 2 ; Han, Fengxiang X. 4 ; Zhou, Li-Gang 5 ; Chen, 1 ;

作者机构: 1.Jiangsu Acad Agr Sci, Inst Food Qual & Safety, Nanjing 210014, Jiangsu, Peoples R China

2.Nanjing Normal Univ, Coll Life Sci, Nanjing 210064, Jiangsu, Peoples R China

3.Henan Inst Sci & Technol, Dept Food Sci, Xinxiang 453003, Peoples R China

4.Jackson State Univ, Dept Chem & Biochem, Jackson, MS 39217 USA

5.China Agr Univ, Dept Plant Pathol, Beijing 100193, Peoples R China

6.Jiangsu Prov Dept Agr & Forestry, Key Lab Food Qual & Safety Jiangsu Prov, State Key Lab Breeding Base, Nanjing 210014, Jiangsu, Peoples R China

关键词: thymol;Oryza sativa;cadmium;nitric oxide;phytotoxicity

期刊名称:JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY ( 影响因子:5.279; 五年影响因子:5.269 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Thymol has been developed as medicine and food preservative due to its immune-regulatory effect and antimicrobial activity, respectively. However, little is currently known about the role of thymol in the modulation of plant physiology. In the present study, we applied biochemical and histochemical approaches to investigate thymol-induced tolerance in rice (Oryza sativa) seedlings against Cd (cadmium) stress. Thymol at 20 mu M recovered root growth completely upon CdCl2 exposure. Thymol pronouncedly decreased Cd-induced ROS accumulation, oxidative injury, cell death, and Cd2+ accumulation in roots. Pharmaceutical experiments suggested that endogenous NO mediated Cd-induced phytotoxicity. Thymol decreased Cd-induced NO accumulation by suppressing the activity of NOS (nitric oxide synthase) and NR (nitrate reductase) in root. The application of NO donor (SNP, sodium nitroprusside) resulted in the increase in endogenous NO level, which in turn compromised the alleviating effects of thymol on Cd toxicity. Such findings may helpful to illustrate the novel role of thymol in the modulation of plant physiology, which may be applicable to improve crop stress tolerance.

  • 相关文献

[1]Thymol Mitigates Cadmium Stress by Regulating Glutathione Levels and Reactive Oxygen Species Homeostasis in Tobacco Seedlings. Ye, Xiefeng,Ling, Tianxiao,Xue, Yanfeng,Xu, Cunfa,Zhou, Wei,Hu, Liangbin,Chen, Jian,Shi, Zhiqi,Chen, Jian,Shi, Zhiqi.

[2]Microcystin-LR-induced phytotoxicity in rice crown root is associated with the cross-talk between auxin and nitric oxide. Chen, Jian,Zhang, Hai-Qiang,Shi, Zhi-Qi,Chen, Jian,Zhang, Hai-Qiang,Shi, Zhi-Qi,Chen, Jian,Zhang, Hai-Qiang,Shi, Zhi-Qi,Hu, Liang-Bin.

[3]Variation of DNA methylation patterns associated with gene expression in rice (Oryza sativa) exposed to cadmium. Feng, Sheng Jun,Liu, Xue Song,Tao, Hua,Tan, Shang Kun,Chu, Shan Shan,Zhang, Xian Duo,Yang, Zhi Min,Oono, Youko,Chen, Jian.

[4]The Fungicidal Activity of Thymol against Fusarium graminearum via Inducing Lipid Peroxidation and Disrupting Ergosterol Biosynthesis. Gao, Tao,Chen, Jian,Shi, Zhiqi,Gao, Tao,Chen, Jian,Shi, Zhiqi,Gao, Tao,Chen, Jian,Shi, Zhiqi,Zhou, Hao,Zhou, Wei,Hu, Liangbin.

[5]Phytotoxicity and uptake of chlorpyrifos in cabbage. Zhang, Zhi-Yong,Liu, Xian-Jin,Shan, Wei-Li,Song, Wen-Cheng,Gong, Yong.

[6]Interactive Effects of Tetracyclines and Copper on Plant Growth and Nutrient Uptake by Eichhornia crassipes. Lu, Xin,Gao, Yan,Luo, Jia,Yan, Shaohua,Wang, Tong,Liu, Lizhu,Zhang, Zhenhua,Lu, Xin,Gao, Yan,Luo, Jia,Yan, Shaohua,Wang, Tong,Liu, Lizhu,Zhang, Zhenhua. 2016

[7]Nitrate Reductase-Dependent Nitric Oxide Production Is Involved in Microcystin-LR-Induced Oxidative Stress in Brassica rapa. Chen, Jian,Zhong, You Ming,Zhang, Hai Qiang,Shi, Zhi Qi,Chen, Jian,Zhong, You Ming,Zhang, Hai Qiang,Shi, Zhi Qi,Chen, Jian,Zhong, You Ming,Zhang, Hai Qiang,Shi, Zhi Qi,Zhang, Hai Qiang.

[8]Accumulation and phytotoxicity of microcystin-LR in rice (Oryza sativa). Chen, Jian,Wang, Fan,Shi, Zhiqi,Chen, Jian,Wang, Fan,Shi, Zhiqi,Chen, Jian,Wang, Fan,Shi, Zhiqi,Han, Fengxiang X.,Zhang, Haiqiang.

[9]Signals induced by exogenous nitric oxide and their role in controlling brown rot disease caused by Monilinia fructicola in postharvest peach fruit. Shi, Jing Ying,Liu, Na,Zhang, Chang,Wang, Qing Guo,Lei, Zhong Hua,Liu, Yun Yun,Ren, Ji Yun,Gu, Rong Xin,Zhu, Li Qin.

[10]Promotion of photosynthesis in transgenic rice over-expressing of maize C-4 phosphoenolpyruvate carboxylase gene by nitric oxide donors. Chen Pingbo,Li Xia,Huo Kai,Wei Xiaodong,Lv Chuangen,Dai Chuanchao,Chen Pingbo,Huo Kai.

[11]Effect of postharvest nitric oxide treatment on the proteome of peach fruit during ripening. Kang, Ruoyi,Jiang, Li,Yu, Zhifang,Zhang, Li,Yu, Mingliang,Ma, Ruijuan.

[12]Enhanced drought tolerance in transgenic rice over-expressing of maize C-4 phosphoenolpyruvate carboxylase gene via NO and Ca2+. Qian, Baoyun,Li, Xia,Liu, Xiaolong,Chen, Pingbo,Ren, Chengang,Qian, Baoyun,Liu, Xiaolong,Dai, Chuanchao.

[13]Hydrogen-induced osmotic tolerance is associated with nitric oxide-mediated proline accumulation and reestablishment of redox balance in alfalfa seedlings. Su, Jiuchang,Zhang, Yihua,Nie, Yang,Cheng, Dan,Shen, Wenbiao,Wang, Ren,Hu, Huali,Chen, Jun,Zhang, Jiaofei,Du, Yuanwei. 2018

[14]Nitric oxide-generating compound GSNO suppresses porcine circovirus type 2 infection in vitro and in vivo. Liu, Chuanmin,Wen, Libin,Xiao, Qi,He, Kongwang,Liu, Chuanmin,Wen, Libin,Xiao, Qi,He, Kongwang,Liu, Chuanmin,Wen, Libin,Xiao, Qi,He, Kongwang,Liu, Chuanmin,Wen, Libin,Xiao, Qi,He, Kongwang. 2017

[15]Molecular characterization and expression of vitellogenin gene from Spodoptera exigua exposed to cadmium stress. Zhao, Jing,Sun, Yang,Xiao, Liubin,Tan, Yongan,Bai, Lixin.

[16]Periphyton growth reduces cadmium but enhances arsenic accumulation in rice (Oryza sativa) seedlings from contaminated soil. Shi, Gao Ling,Ma, Hong Xiang,Lu, Hai Ying,Liu, Jun Zhuo,Wu, Yong Hong,Lou, Lai Qing,Tang, Xian Jin.

[17]Screening for cadmium tolerance of 21 cultivars from Italian ryegrass (Lolium multiflorum Lam) during germination. Fang, Zhigang,Hu, Zhaoyang,Zhao, Huihui,Yang, Lei,Lou, Laiqing,Cai, Qingsheng,Fang, Zhigang,Ding, Chenglong.

[18]Cinnamaldehyde Ameliorates Cadmium-Inhibited Root Elongation in Tobacco Seedlings via Decreasing Endogenous Hydrogen Sulfide Production. Ye, Xie-Feng,Ling, Tianxiao,Yu, Xiao-Na,Xue, Yanfeng,Wang, Yong,Cheng, Changxin,Feng, Guosheng,Hu, Liangbin,Shi, Zhiqi,Chen, Jian,Shi, Zhiqi,Chen, Jian.

[19]SUBCELLULAR DISTRIBUTION AND CHEMICAL FORMS OF CADMIUM IN LEAVES OF THE HYPERACCUMULATOR PLANT Solanum nigrum L.. Guo, Zhi,Ao, Yan-song,Guo, Zhi,Chen, Liu-gen,Yuan, Hai-yan,Yuan, Hai-yan.

[20]Transcription of potassium transporter genes of KT/HAK/KUP family in peach seedlings and responses to abiotic stresses. Song, Z. -Z.,Yang, Y.,Ma, R. -J.,Xu, J. -L.,Yu, M. -L.,Song, Z. -Z.,Yang, Y.,Ma, R. -J.,Xu, J. -L.,Yu, M. -L.,Song, Z. -Z..

作者其他论文 更多>>