您好,欢迎访问江苏省农业科学院 机构知识库!

Treated domestic sewage irrigation significantly decreased the CH4, N2O and NH3 emissions from paddy fields with straw incorporation

文献类型: 外文期刊

作者: Xu, Shanshan 2 ; Hou, Pengfu 2 ; Xue, Lihong 2 ; Wang, Shaohua 1 ; Yang, Linzhang 2 ;

作者机构: 1.Nanjing Agr Univ, Minist Agr, Key Lab Crop Physiol & Ecol Southern China, Nanjing 210095, Jiangsu, Peoples R China

2.Jiangsu Acad Agr Sci, Inst Agr Resources & Environm, Nanjing 210014, Jiangsu, Peoples R China

关键词: Paddy fields;Straw returning;Domestic sewage irrigation;Yield;Greenhouse gas;Ammonia volatilization

期刊名称:ATMOSPHERIC ENVIRONMENT ( 影响因子:4.798; 五年影响因子:5.295 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Straw incorporation and domestic sewage irrigation have been recommended as an environmentally friendly agricultural practice and are widely used not only in China but also in other countries. The individual effects on yield and environmental impacts have been studied extensively, but the comprehensive effect when straw returning and domestic sewage irrigation are combined together has seldom been reported. This study was conducted to examine the effects of straw returning and domestic sewage irrigation on rice yields, greenhouse gas emissions (GHGs) and ammonia (NH3) volatilization from paddy fields from 2015 to 2016. The results showed that the rice yield was not affected by the irrigation water sources and straw returning under the same total N input, which was similar in both years. Due to the rich N in the domestic sewage, domestic sewage irrigation could reduce approximately 45.2% of chemical nitrogen fertilizer input without yield loss. Compared to straw removal treatments, straw returning significantly increased the CH4 emissions by approximately 7-9-fold under domestic sewage irrigation and 13-14-fold under tap water irrigation. Straw returning also increased the N2O emissions under the two irrigation water types. In addition, the seasonal NH3 volatilization loss was significantly increased by 88.8% and 61.2% under straw returning compared to straw removal in 2015 and 2016, respectively. However, domestic sewage irrigation could decrease CH4 emissions by 24.5-26.6%, N2O emissions by 37.0-39.0% and seasonal NH3 volatilization loss by 27.2-28.3% under straw returning compared to tap water irrigation treatments. Global warming potentials (GWP) and greenhouse gas intensities (GHGI) were significantly increased with straw returning compared with those of straw removal, while they were decreased by domestic sewage irrigation under straw returning compared to tap water irrigation. Significant interactions between straw returning and domestic sewage irrigation on NH3 volatilization loss, CH4 and N2O emissions were observed. The results indicate that domestic sewage irrigation combined with straw returning could be an environmentally friendly and resource-saving agricultural management measure for paddy fields with which to reduce the chemical N input, GHG emissions, and NH3 volatilization loss while maintaining high rice productivity. (C) 2017 Elsevier Ltd. All rights reserved.

  • 相关文献

[1]Effect of rice panicle size on paddy field CH4 emissions. Sun, Yanni,Zhang, Yi,Hang, Xiaoning,Zhang, Weijian,Tian, Yunlu,Hang, Xiaoning,Deng, Aixi,Zhang, Jun,Zhang, Weijian.

[2]Ammonia and greenhouse gas emissions from different types of deep litter used for pig rearing. Zhang, Liping,Sheng, Jing,Zheng, Jianchu,Zhang, Yuefang,Chen, Liugen,Sun, Guofeng,Zheng, Jianchu.

[3]Seasonal and diurnal dynamics of physicochemical parameters and gas production in vertical water column of a eutrophic pond. Gao, Yan,Zhang, Zhenhua,Liu, Xinhong,Yi, Neng,Zhang, Li,Song, Wei,Wang, Yan,Yan, Shaohua,Gao, Yan,Mazumder, Asit,Mazumder, Asit.

[4]Straw enhanced CO2 and CH4 but decreased N2O emissions from flooded paddy soils: Changes in microbial community compositions. Wang, Ning,Yu, Jian-Guang,Zhao, Ya-Hui,Chang, Zhi-Zhou,Shi, Xiao-Xia,Ma, Lena Q.,Li, Hong-Bo,Ma, Lena Q.. 2018

[5]Effect of Application Ratio of Potassium over Nitrogen on Litchi Fruit Yield, Quality, and Storability. Li, Guoliang,Yang, Shaohai,He, Zhaohuan,Zhou, Changmin,Yao, Lixian.

[6]Co-application of molybdenum and selenium fertilizers increase uptake, recovery and harvest index of molybdenum and selenium in pepper crop. Hu, Chengxiao,Zhao, Xiaohu,Tan, Qiling,Sun, Xuecheng,Zhang, Mu.

[7]Long-term potash application and wheat straw return reduced soil potassium fixation and affected crop yields in North China. Tan, Deshui,Liu, Zhaohui,Jiang, Lihua,Luo, Jiafa,Luo, Jiafa,Li, Jie.

[8]Dynamic changes of nutrition in litchi foliar and effects of potassium-nitrogen fertilization ratio. Li, G. L.,He, Z. H.,Zhou, C. M.,Yao, L. X.. 2015

[9]Evaluation of the yield and nitrogen use efficiency of the dominant maize hybrids grown in North and Northeast China. Chen FanJun,Yuan LiXing,Mi GuoHua,Zhang FuSuo,Fang ZenGuo,Gao Qiang,Ye YouLiang,Jia LiangLiang. 2013

[10]Effects of straw addition on increased greenhouse vegetable yield and reduced antibiotic residue in fluvo-aquic soil. Wang Xiu-bin,Li Chun-hua,Huang Shao-wen,Tang Ji-wei,Jin Ji-yun,Gao Wei. 2015

[11]EFFECT OF NITROGEN MANAGEMENT ON PRODUCTIVITY, NITROGEN USE EFFICIENCY AND NITROGEN BALANCE FOR A WHEAT-MAIZE SYSTEM. Sha, Zhimin,Yao, Dongwei,Zhou, Wei,He, Ping,Xing, Suli. 2013

[12]Greenhouse tomato-cucumber yield and soil N leaching as affected by reducing N rate and adding manure: a case study in the Yellow River Irrigation Region China. Luo, Jiang-Hang,Chen, Xiao-Qun,Zhang, Xue-Jun,Zhao, Ying,Zhang, Wei-Li.

[13]Response surface analysis of microwave-assisted extraction of polysaccharides from cultured Cordyceps militaris. Song, Jiang-Feng,Li, Da-Jing,Liu, Chun-Quan,Song, Jiang-Feng,Li, Da-Jing,Liu, Chun-Quan. 2009

作者其他论文 更多>>