Treated domestic sewage irrigation significantly decreased the CH4, N2O and NH3 emissions from paddy fields with straw incorporation
文献类型: 外文期刊
作者: Xu, Shanshan 2 ; Hou, Pengfu 2 ; Xue, Lihong 2 ; Wang, Shaohua 1 ; Yang, Linzhang 2 ;
作者机构: 1.Nanjing Agr Univ, Minist Agr, Key Lab Crop Physiol & Ecol Southern China, Nanjing 210095, Jiangsu, Peoples R China
2.Jiangsu Acad Agr Sci, Inst Agr Resources & Environm, Nanjing 210014, Jiangsu, Peoples R China
关键词: Paddy fields;Straw returning;Domestic sewage irrigation;Yield;Greenhouse gas;Ammonia volatilization
期刊名称:ATMOSPHERIC ENVIRONMENT ( 影响因子:4.798; 五年影响因子:5.295 )
ISSN:
年卷期:
页码:
收录情况: SCI
摘要: Straw incorporation and domestic sewage irrigation have been recommended as an environmentally friendly agricultural practice and are widely used not only in China but also in other countries. The individual effects on yield and environmental impacts have been studied extensively, but the comprehensive effect when straw returning and domestic sewage irrigation are combined together has seldom been reported. This study was conducted to examine the effects of straw returning and domestic sewage irrigation on rice yields, greenhouse gas emissions (GHGs) and ammonia (NH3) volatilization from paddy fields from 2015 to 2016. The results showed that the rice yield was not affected by the irrigation water sources and straw returning under the same total N input, which was similar in both years. Due to the rich N in the domestic sewage, domestic sewage irrigation could reduce approximately 45.2% of chemical nitrogen fertilizer input without yield loss. Compared to straw removal treatments, straw returning significantly increased the CH4 emissions by approximately 7-9-fold under domestic sewage irrigation and 13-14-fold under tap water irrigation. Straw returning also increased the N2O emissions under the two irrigation water types. In addition, the seasonal NH3 volatilization loss was significantly increased by 88.8% and 61.2% under straw returning compared to straw removal in 2015 and 2016, respectively. However, domestic sewage irrigation could decrease CH4 emissions by 24.5-26.6%, N2O emissions by 37.0-39.0% and seasonal NH3 volatilization loss by 27.2-28.3% under straw returning compared to tap water irrigation treatments. Global warming potentials (GWP) and greenhouse gas intensities (GHGI) were significantly increased with straw returning compared with those of straw removal, while they were decreased by domestic sewage irrigation under straw returning compared to tap water irrigation. Significant interactions between straw returning and domestic sewage irrigation on NH3 volatilization loss, CH4 and N2O emissions were observed. The results indicate that domestic sewage irrigation combined with straw returning could be an environmentally friendly and resource-saving agricultural management measure for paddy fields with which to reduce the chemical N input, GHG emissions, and NH3 volatilization loss while maintaining high rice productivity. (C) 2017 Elsevier Ltd. All rights reserved.
- 相关文献
作者其他论文 更多>>
-
Application of products derived from pyrolysis and hydrothermal carbonization as conditioners for aerobic composting produced multiple beneficial effects: Evaluation based on 10-ton pilot scale trials
作者:Feng, Yuanyuan;Tang, Qingtong;Feng, Yuanyuan;Tang, Qingtong;Wang, Lisha;Jin, Hongmei;Feng, Yanfang;Xue, Lihong;Xie, Wenping;Yu, Jie;Zhang, Mingchao;Wang, Bingyu;Xie, Huifang;Bo, Luji
关键词:Pyrochar; Hydrochar; Hydrothermal carbonization aqueous phase; Aerobic composting; Compost quality
-
Aerobic composting with hydrothermal carbonization aqueous phase conditioning: Stabilized active gaseous nitrogen emissions
作者:Feng, Yuanyuan;Sun, Haijun;Chen, Sen;Feng, Yuanyuan;Chen, Sen;Jin, Hongmei;Feng, Yanfang;Xue, Lihong;Feng, Yuanyuan;Chen, Sen;Jin, Hongmei;Feng, Yanfang;Xue, Lihong;Xie, Wenping;Feng, Yuanyuan;Poinern, Gerrard Eddy Jai
关键词:HAP; Compost fertility; Gaseous nitrogen emission; Microbial community; Poultry manure
-
Efficient magnetic capture of PE microplastic from water by PEG modified Fe3 O4 nanoparticles: Performance, kinetics, isotherms and influence factors
作者:Zhang, Yifan;Feng, Yanfang;Xue, Lihong;He, Shiying;Zhang, Yifan;Duan, Jingjing;Liu, Ruiqian;Feng, Yanfang;Xue, Lihong;Yang, Linzhang;He, Shiying;Petropoulos, Evangelos;Petropoulos, Evangelos
关键词:Microplastic removal; Adsorption; Magnetic nanoparticles; Wastewater; Surface modification
-
Does higher crop N utilization lead to lower NH3 volatilization in paddies?
作者:Chen, Mengxia;Ke, Jian;Zhang, Fangqi;Wu, Liquan;Hou, Pengfu;Chen, Mengxia;Yang, Bei;Zhang, Fangqi;Hou, Pengfu;Yang, Linzhang;Xue, Lihong
关键词:Paddy field; N use efficiency; Ammonia volatilization; Root bleeding sap; Leaf area index
-
Soil organic matter enhanced the soil colloidal phosphorus via co-precipitation with Fe/Al in paddy soil
作者:Li, Jing;Xue, Lihong;Li, Jing;Xue, Lihong;Hu, Xin;Shi, Linlin
关键词:Colloidal phosphorus; Organic fertilizer; Organic carbon; Co-precipitates; Paddy soil
-
Reducing methane emissions by developing lowfumarate high-ethanol eco-friendly rice
作者:Jin, Yunkai;Hu, Jia;Liu, Chunlin;Wu, Jun;Jin, Yunkai;Hu, Jia;Liu, Chunlin;Wu, Jun;Jin, Yunkai;Hu, Jia;Bettembourg, Mathilde;Bedada, Girma;Sun, Chuanxin;Liu, Tong;Moazzami, Ali A.;Schnurer, Anna;Sun, Kai;Hao, Peiying;Tang, Jintian;Ye, Zihong;Yu, Xiaoping;Xue, Lihong;Li, Peng;Pan, Aihu;Weng, Lushui;Xiao, Guoying
关键词:paddy; methane emission; root exudates; fumarate; ethanol; low-methane rice
-
A Potassium Methyl Silicate/MnO2 Composite for the Rapid Removal of Dyes from Water
作者:Li, Jing;Xue, Lihong;Li, Ting;Hu, Xin
关键词:Adsorption; Clean water; Hydrophobicity; Methylene blue; PMS@MnO2



