您好,欢迎访问湖北省农业科学院 机构知识库!

Overexpression of GhDof1 improved salt and cold tolerance and seed oil content in Gossypium hirsutum

文献类型: 外文期刊

作者: Su, Ying 1 ; Liang, Wei 1 ; Liu, Zhengjie 1 ; Wang, Yumei; Zhao, Yanpeng 1 ; Ijaz, Babar 1 ; Hua, Jinping 2 ;

作者机构: 1.China Agr Univ, Beijing Key Lab Crop Genet Improvement, Minist Educ,Lab Cotton Genet Genom & Breeding, Key Lab Crop Heterosis & Utilizat,Coll Agron & Bi, Beijing, Peoples R China

2.China Agr Univ, Beijing Key Lab Crop Genet Improvement, Minist Educ,Lab Cotton Genet Genom & Breeding, Key Lab Crop Heterosi

关键词: Abiotic stress;GhDof1;Genetic transformation;Oil content;Upland cotton

期刊名称:JOURNAL OF PLANT PHYSIOLOGY ( 影响因子:3.549; 五年影响因子:4.164 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: A homologous GhDof1, which belongs to a large family of plant-specific transcription factor DOF, was isolated from Upland cotton (Gossypium hirsutum L.). GhDof1 protein was located in the nucleus of onion epidermal cells, the core domain of transcriptional activity existed in the C-terminal, and the activity elements of GhDof1 promoter existed in the regions of -645 similar to -469 bp and -286 similar to -132 bp of transcriptional start codon. GhDof1 constitutively expressed in leaves, roots and stems, accumulated highest in leaves. The salinity and cold treatments induced GhDof1 transcript accumulation. The GhDof1-overexpressed cotton showed significantly higher salt and cold tolerance over the wild-type plants. Under salt stress, the root growth of overexpressed GhDof1 lines was promoted. The expression levels of stress-responsive genes, GhP5CS, GhSOD and GhMYB, were differently up-regulated in transgenic lines. Oil contents increased in some transgenic plants, and protein contents reduced compared with transformed receptor. These results suggested that GhDof1 was a functional transcription factor for improving the abiotic tolerance and seed oil content in Upland cotton.

  • 相关文献

[1]Overexpression of Heteromeric GhACCase Subunits Enhanced Oil Accumulation in Upland Cotton. Cui, Yupeng,Liu, Zhengjie,Zhao, Yanpeng,Li, Le,Wu, Han,Xu, Suixi,Hua, Jinping,Liu, Zhengjie,Wang, Yumei,Huang, Yi.

[2]Genetic analysis and QTL mapping of oil content and seed index using two recombinant inbred lines and two backcross populations in Upland cotton. Shang, Lianguang,Abduweli, Abdugheni,Hua, Jinping,Wang, Yumei.

[3]Establishment and Application of Model for Determining Oil Content of Cottonseed Using Near Infrared Spectroscopy. Shang Lian-guang,Li Yu-hua,Wang Dan,Xiong Min,Hua Jin-ping,Shang Lian-guang,Li Yu-hua,Wang Dan,Xiong Min,Hua Jin-ping,Li Jun-hui,Wang Yu-mei. 2015

[4]Association mapping analysis of fiber yield and quality traits in Upland cotton (Gossypium hirsutum L.). Mulugeta Seyoum Ademe,Du, Xiongming,Jia, Yinhua,Shoupu He,Zhaoe Pan,Junling Sun,Qinglian Wang,Hongde Qin,Jinhai Liu,Hui Liu,Jun Yang,Dongyong Xu,Jinlong Yang,Zhiying Ma,Jinbiao Zhang,Zhikun Li,Zhongmin Cai,Xuelin Zhang,Xin Zhang,Aifen Huang,Xianda Yi,Guanyin Zhou,Lin Li,Haiyong Zhu,Baoyin Pang,Liru Wang,Yinhua Jia,Xiongming Du.

[5]Dynamic QTL mapping for plant height in Upland cotton (Gossypium hirsutum). Shang, Lianguang,Abduweli, Abdugheni,Cai, Shihu,Liu, Fang,Wang, Kunbo,Wang, Yumei.

[6]Seedling root QTLs analysis on dynamic development and upon nitrogen deficiency stress in Upland cotton. Shang, Lianguang,Cai, Shihu,Ma, Lingling,Wang, Yumei,Abduweli, Abdugheni,Wang, Meiyan,Wang, Xiaocui,Liang, Qingzhi,Hua, Jinping,Wang, Yumei.

[7]Partial Dominance, Overdominance, Epistasis and QTL by Environment Interactions Contribute to Heterosis in Two Upland Cotton Hybrids. Shang, Lianguang,Cai, Shihu,Wang, Xiaocui,Li, Yuhua,Abduweli, Abdugheni,Hua, Jinping,Wang, Yumei. 2016

[8]Genetic Analysis and QTL Detection on Fiber Traits Using Two Recombinant Inbred Lines and Their Backcross Populations in Upland Cotton. Lianguang Shang,Yumei Wang,Xiaocui Wang,Fang Liu,Abdugheni Abduweli,Shihu Cai,Yuhua Li,Lingling Ma,Kunbo Wang,Jinping Hua. 2016

[9]Main Effect QTL with Dominance Determines Heterosis for Dynamic Plant Height in Upland Cotton. Lianguang Shang,Lingling Ma,Yumei Wang,Ying Su,Xiaocui Wang,Yuhua Li,Abdugheni Abduweli,Shihu Cai,Fang Liu,Kunbo Wang,Jinping Hua. 2016

[10]QTLs Analysis and Validation for Fiber Quality Traits Using Maternal Backcross Population in Upland Cotton. Ma, Lingling,Zhao, Yanpeng,Shang, Lianguang,Hua, Jinping,Wang, Yumei. 2017

[11]Overexpression of Vitreoscilla hemoglobin increases waterlogging tolerance in Arabidopsis and maize. Du, Hewei,Shen, Xiaomeng,Zhang, Zuxin,Du, Hewei,Huang, Min,Du, Hewei,Zhang, Zuxin,Huang, Yiqin. 2016

[12]Expression of a novel OSPGYRP (rice proline-, glycine- and tyrosine-rich protein) gene, which is involved in vesicle trafficking, enhanced cold tolerance in E-coli. Li, Hui,Yang, Jing,Wang, Yayu,Tu, Sansi,Zhu, Yingguo,Li, Yangsheng,Chen, Zhijun,Feng, Lingling. 2009

作者其他论文 更多>>