您好,欢迎访问上海市农业科学院 机构知识库!

Salicylic Acid and Abiotic Stress Responses in Rice

文献类型: 外文期刊

作者: Pal, M. 1 ; Kovacs, V. 1 ; Szalai, G. 1 ; Soos, V. 1 ; Ma, X. 2 ; Liu, H. 2 ; Mei, H. 2 ; Janda, T. 1 ;

作者机构: 1.Hungarian Acad Sci, Inst Agr, Agr Res Ctr, H-2462 Martonvasar, Hungary

2.Shanghai Acad Agr Sci, Shanghai Agrobiol Gene Ctr, Shanghai, Peoples R China

关键词: abiotic stress;cold;drought;polyamines;rice;salicylic acid

期刊名称:JOURNAL OF AGRONOMY AND CROP SCIENCE ( 影响因子:3.473; 五年影响因子:4.395 )

ISSN: 0931-2250

年卷期: 2014 年 200 卷 1 期

页码:

收录情况: SCI

摘要: Among plant species rice (Oryza sativa L.) leaves can be characterised with a very high level of salicylic acid content; however, its exact role is still poorly understood. In the present work, rice genotypes with different levels of drought tolerance have been subjected to PEG-induced drought or cold stress at 10 degrees C in order to find relationship between the salicylic acid metabolism and the level of stress tolerance; and between the salicylic acid level and other protective mechanisms. Although the drought-sensitive genotypes usually contained slightly higher amount of salicylic acid than the tolerant ones, there was no strong correlation between the salicylic acid contents and the degree of drought tolerance. Because the expression pattern of the chorismate synthase and isochorismate synthase genes did not correlate with the level of salicylic acid, but there was a correlation between the levels of salicylic acid and ortho-hydroxy-cinnamic, it is assumed that the salicylic acid synthesis via ortho-hydroxy-cinnamic acid may play a more decisive role than the chorismate-isochorismate-salicylic acid pathway in rice. While the activity of the glutathione reductase enzyme did not show correlation with drought tolerance, the glutathione S-transferase activities were usually higher in the leaves of the drought-tolerant varieties than in the sensitive ones. The salicylic acid contents in the leaves were not substantially affected by the applied stress conditions; however, other stress-related compounds polyamines showed marked, stress-specific responses. Correlation data suggest that there is no direct link between the abiotic stress-induced polyamine changes and the salicylic acid metabolism in rice.

  • 相关文献

[1]Isolation, optimization, and functional analysis of the cDNA encoding transcription factor OsDREB1B in Oryza sativa L.. Qin, Qiu-lin,Liu, Jin-ge,Zhang, Zhen,Peng, Ri-he,Xiong, Ai-sheng,Yao, Quan-hong,Chen, Jian-min.

[2]Isolated and characterization of a cDNA encoding ethylene-responsive element binding protein (EREBP)/AP2-type protein, RCBF2, in Oryza sativa L.. Liu, Jin-Ge,Zhang, Zhen,Qin, Qiu-Lin,Peng, Ri-He,Xiong, Ai-Sheng,Chen, Jian-Min,Xu, Fang,Zhu, Hong,Yao, Quan-Hong.

[3]Expression profile analysis of 9 heat shock protein genes throughout the life cycle and under abiotic stress in rice. Ye ShuiFeng,Yu ShunWu,Shu LieBo,Wu JinHong,Luo LiJun,Ye ShuiFeng,Wu AiZhong,Wu AiZhong. 2012

[4]Drought-responsive mechanisms in rice genotypes with contrasting drought tolerance during reproductive stage. Ji, Kuixian,Wang, Yangyang,Shen, Shihua,Chen, Hui,Sun, Weining,Lou, Qiaojun,Mei, Hanwei,Ji, Kuixian,Wang, Yangyang. 2012

[5]Expression of a rice DREB1 gene, OsDREB1D, enhances cold and high-salt tolerance in transgenic Arabidopsis. Zhang, Yang,Chen, Chen,Jin, Xiao-Fen,Xiong, Ai-Sheng,Peng, Ri-He,Yao, Quan-Hong,Zhang, Yang,Chen, Chen,Hong, Yi-Huan,Chen, Jian-Min.

[6]Salicylic acid alleviates cadmium-induced inhibition of growth and photosynthesis through upregulating antioxidant defense system in two melon cultivars (Cucumis melo L.). Zhang, Yongping,Xu, Shuang,Yang, Shaojun,Chen, Youyuan,Zhang, Yongping,Xu, Shuang,Yang, Shaojun,Chen, Youyuan.

[7]Simulating Superior Genotypes for Plant Height based on QTLs: Towards Virtual Breeding of Rice. Gerhard Buck-Sorlin,Lifeng Xu,Weilong Ding,Michael Henke,Winfried Kurth,Jun Zhu. 2012

[8]AtCPK6, a functionally redundant and positive regulator involved in salt/drought stress tolerance in Arabidopsis. Xu, Jing,Tian, Yong-Sheng,Peng, Ri-He,Xiong, Ai-Sheng,Zhu, Bo,Jin, Xiao-Fen,Gao, Feng,Fu, Xiao-Yan,Yao, Quan-Hong,Xu, Jing,Hou, Xi-Lin. 2010

[9]Relationships of endogenous plant hormones to accumulation of grain protein and starch in winter wheat under different post-anthesis soil water statusses. Xie, ZJ,Jiang, D,Cao, WX,Dai, TB,Jing, Q.

[10]Transcription factor OsAP21 gene increases salt/drought tolerance in transgenic Arabidopsis thaliana. Jin, Xiaofeng,Xue, Yong,Xu, RanRan,Bian, Lin,Zhu, Bo,Han, Hongjuan,Peng, Rihe,Yao, Quanhong,Wang, Ren.

[11]Effects of abiotic stress and crop management on cereal grain composition: implications for food quality and safety. Halford, Nigel G.,Curtis, Tanya Y.,Chen, Zhiwei,Huang, Jianhua.

[12]Expression analysis of a novel pyridoxal kinase messenger RNA splice variant, PKL, in oil rape suffering abiotic stress and phytohormones. Yu, Shunwu,Luo, Lijun. 2008

[13]Isolation and characterization of BnMKK1 responsive to multiple stresses and affecting plant architecture in tobacco. Yu, Shunwu,Chen, Chen,Li, Jiajia,Ye, Shuifeng,Liu, Guolan,Mei, Xiaohan,Luo, Lijun,Zhang, Lida,Tang, Kexuan.

[14]Isolation, Phylogeny and Expression Patterns of AP2-Like Genes in Apple (Malus x domestica Borkh). Zhuang, Jing,Yao, Quan-Hong,Xiong, Ai-Sheng,Zhuang, Jing,Zhang, Jian.

[15]The expression pattern of a rice proteinase inhibitor gene OsPI8-1 implies its role in plant development. Wang, Jiang,Shi, Zhen-Ying,Wan, Xin-Shan,Zhang, Jing-Liu,Shen, Ge-Zhi. 2008

[16]Characterization of high-yield performance as affected by genotype and environment in rice. Chen, Song,Zeng, Fang-rong,Zhang, Guo-ping,Pao, Zong-zhi. 2008

[17]Bayesian dissection for genetic architecture of traits associated with nitrogen utilization efficiency in rice. Yang, Runqing,Piao, Zhongze,Li, Maobai,Zhang, Jianming,Wang, Hui,Li, Peide,Zhu, Chunmei,Luo, Zhixiang,Lee, Jungro. 2009

[18]Isolation and characterization of a novel cDNA encoding ERF/AP2-type transcription factor OsAP25 from Oryza sativa L.. Fu, Xiao-Yan,Zhang, Zhen,Peng, Ri-He,Xiong, Ai-Sheng,Liu, Jin-Ge,Wu, Li-Juan,Gao, Feng,Zhu, Hong,Guo, Zhao-Kui,Yao, Quan-Hong. 2007

[19]OsHSF7 gene in rice, Oryza sativa L., encodes a transcription factor that functions as a high temperature receptive and responsive factor. Liu, Jin-Ge,Peng, Ri-He,Xiong, Ai-sheng,Yao, Quan-Hong,Liu, Jin-Ge,Zhang, Zhen,Qin, Qiu-lin,Chen, Jian-Min.

[20]Effects of short-term high temperature on grain quality and starch granules of rice (Oryza sativa L.) at post-anthesis stage. Chen, Jianlin,Tang, Liang,Shi, Peihua,Yang, Baohua,Sun, Ting,Cao, Weixing,Zhu, Yan,Chen, Jianlin.

作者其他论文 更多>>