您好,欢迎访问上海市农业科学院 机构知识库!

Expression profile analysis of 9 heat shock protein genes throughout the life cycle and under abiotic stress in rice

文献类型: 外文期刊

作者: Ye ShuiFeng 1 ; Yu ShunWu 1 ; Shu LieBo 1 ; Wu JinHong 1 ; Wu AiZhong 2 ; Luo LiJun 1 ;

作者机构: 1.Shanghai Agrobiol Gene Ctr, Shanghai 201106, Peoples R China

2.Shanghai Jiao Tong Univ, Sch Agr & Biol, Shanghai 201101, Peoples R China

3.Shanghai Acad Agr Sci, Shanghai 201106, Peoples R China

关键词: heat shock protein;drought;heat;real-time PCR;rice

期刊名称:CHINESE SCIENCE BULLETIN ( 影响因子:1.649; 五年影响因子:1.738 )

ISSN: 1001-6538

年卷期: 2012 年 57 卷 4 期

页码:

收录情况: SCI

摘要: Plant heat shock proteins (Hsps) facilitate protein folding or assembly under diverse developmental and adverse environmental conditions. Nine OsHsps were identified in our previous study from a proteomic analysis of rice cv. IRAT 109 leaf samples at the seedling stage under drought stress. To obtain additional information on the 9 OsHsp genes, this study focused on an expression profile analysis at different development stages throughout the life cycle of rice, and under different abiotic stresses and phytohormone treatments. The 9 genes exhibited distinctive expression patterns in different organs or development stages. Five of the genes (OsHsp72.90, OsHsp72.57, OsHsp71.18, OsHsp24.15 and OsHsp18.03) showed high expression in the endosperm, indicating that OsHsp genes may play important roles in rice seed development. All 9 OsHsps were up-regulated under heat, polyethylene glycol, and abscisic acid treatment, whereas salt stress caused up-regulation of 6 genes (OsHsp93.04, OsHsp71.10, OsHsp71.18, OsHsp72.57, OsHsp24.15 and OsHsp18.03) and cold stress resulted in down-regulation of OsHsp93.04 and OsHsp72.57. These diverse expression profiles imply potential functional diversity of the Hsp gene family in rice.

  • 相关文献

[1]Isolated and characterization of a cDNA encoding ethylene-responsive element binding protein (EREBP)/AP2-type protein, RCBF2, in Oryza sativa L.. Liu, Jin-Ge,Zhang, Zhen,Qin, Qiu-Lin,Peng, Ri-He,Xiong, Ai-Sheng,Chen, Jian-Min,Xu, Fang,Zhu, Hong,Yao, Quan-Hong.

[2]Salicylic Acid and Abiotic Stress Responses in Rice. Pal, M.,Kovacs, V.,Szalai, G.,Soos, V.,Janda, T.,Ma, X.,Liu, H.,Mei, H.. 2014

[3]Drought-responsive mechanisms in rice genotypes with contrasting drought tolerance during reproductive stage. Ji, Kuixian,Wang, Yangyang,Shen, Shihua,Chen, Hui,Sun, Weining,Lou, Qiaojun,Mei, Hanwei,Ji, Kuixian,Wang, Yangyang. 2012

[4]OsAREB1, an ABRE-binding protein responding to ABA and glucose, has multiple functions in Arabidopsis. Jin, Xiao-Fen,Xiong, Ai-Sheng,Peng, Ri-He,Liu, Jin-Ge,Gao, Feng,Yao, Quan-Hong,Chen, Jian-Min.

[5]Simulating Superior Genotypes for Plant Height based on QTLs: Towards Virtual Breeding of Rice. Gerhard Buck-Sorlin,Lifeng Xu,Weilong Ding,Michael Henke,Winfried Kurth,Jun Zhu. 2012

[6]AtCPK6, a functionally redundant and positive regulator involved in salt/drought stress tolerance in Arabidopsis. Xu, Jing,Tian, Yong-Sheng,Peng, Ri-He,Xiong, Ai-Sheng,Zhu, Bo,Jin, Xiao-Fen,Gao, Feng,Fu, Xiao-Yan,Yao, Quan-Hong,Xu, Jing,Hou, Xi-Lin. 2010

[7]Relationships of endogenous plant hormones to accumulation of grain protein and starch in winter wheat under different post-anthesis soil water statusses. Xie, ZJ,Jiang, D,Cao, WX,Dai, TB,Jing, Q.

[8]Transcription factor OsAP21 gene increases salt/drought tolerance in transgenic Arabidopsis thaliana. Jin, Xiaofeng,Xue, Yong,Xu, RanRan,Bian, Lin,Zhu, Bo,Han, Hongjuan,Peng, Rihe,Yao, Quanhong,Wang, Ren.

[9]Effects of abiotic stress and crop management on cereal grain composition: implications for food quality and safety. Halford, Nigel G.,Curtis, Tanya Y.,Chen, Zhiwei,Huang, Jianhua.

[10]Molecular cloning, characterization, and function analysis of a mevalonate pyrophosphate decarboxylase gene from Ganoderma lucidum. Shi, Liang,Qin, Lei,Ren, Ang,Fang, Xing,Mu, Dashuai,Zhao, Mingwen,Xu, Yingjie,Tan, Qi.

[11]Estimating number of transgene copies in transgenic rapeseed by real-time PCR assay with HMG I/Y as an endogenous reference gene. Weng, H,Pan, AH,Yang, LT,Zhang, CM,Liu, ZL,Zhang, DB.

[12]Identification and Quantification of Three Genetically Modified Insect Resistant Cotton Lines Using Conventional and TaqMan Real-Time Polymerase Chain Reaction Methods. Yang, LT,Pan, AH,Zhang, KW,Guo, JC,Yin, CS,Chen, JX,Huang, C,Zhang, DB.

[13]Evaluation of Four Genes in Rice for Their Suitability As Endogenous Reference Standards in Quantitative PCR. Wang, Chong,Rao, Jun,Liu, Yinan,Yang, Litao,Zhang, Dabing,Jiang, Lingxi,Zhang, Dabing.

[14]Event-Specific Quantitative Detection of Nine Genetically Modified Maizes Using One Novel Standard Reference Molecule. Yang, Litao,Guo, Jinchao,Pan, Aihu,Zhang, Haibo,Zhang, Kewei,Wang, Zhengming,Zhang, Dabing.

[15]Molecular characteristics and expression profiles of glycerol-3-phosphate dehydrogenase 1 (GPD1) gene in pig. Gao, Y. Z.,Jiang, Y.,Bai, C. Y.,Pan, Y. C.,Wu, X.,Sun, Y. Z..

[16]The expression pattern of a rice proteinase inhibitor gene OsPI8-1 implies its role in plant development. Wang, Jiang,Shi, Zhen-Ying,Wan, Xin-Shan,Zhang, Jing-Liu,Shen, Ge-Zhi. 2008

[17]Characterization of high-yield performance as affected by genotype and environment in rice. Chen, Song,Zeng, Fang-rong,Zhang, Guo-ping,Pao, Zong-zhi. 2008

[18]Bayesian dissection for genetic architecture of traits associated with nitrogen utilization efficiency in rice. Yang, Runqing,Piao, Zhongze,Li, Maobai,Zhang, Jianming,Wang, Hui,Li, Peide,Zhu, Chunmei,Luo, Zhixiang,Lee, Jungro. 2009

[19]Isolation and characterization of a novel cDNA encoding ERF/AP2-type transcription factor OsAP25 from Oryza sativa L.. Fu, Xiao-Yan,Zhang, Zhen,Peng, Ri-He,Xiong, Ai-Sheng,Liu, Jin-Ge,Wu, Li-Juan,Gao, Feng,Zhu, Hong,Guo, Zhao-Kui,Yao, Quan-Hong. 2007

[20]OsHSF7 gene in rice, Oryza sativa L., encodes a transcription factor that functions as a high temperature receptive and responsive factor. Liu, Jin-Ge,Peng, Ri-He,Xiong, Ai-sheng,Yao, Quan-Hong,Liu, Jin-Ge,Zhang, Zhen,Qin, Qiu-lin,Chen, Jian-Min.

作者其他论文 更多>>