您好,欢迎访问上海市农业科学院 机构知识库!

AtCopeg1, the unique gene originated from AtCopia95 retrotransposon family, is sensitive to external hormones and abiotic stresses

文献类型: 外文期刊

作者: Duan, Ke 1 ; Ding, Xiangzhen 2 ; Zhang, Qiong 3 ; Zhu, Hong 1 ; Pan, Aihu 1 ; Huang, Jianhua 1 ;

作者机构: 1.Shanghai Acad Agr Sci, Inst Biol Tech, Shanghai Key Lab Agr Genet, Shanghai 201106, Peoples R China

2.Shanxi Normal Univ, Coll Life Sci, Linfen, Peoples R China

3.Nanjing Agr Univ, Coll Hort Sci, Nanjing, Peoples R China

关键词: Arabidopsis;Gene;copia retrotransposon;AtCopia95

期刊名称:PLANT CELL REPORTS ( 影响因子:4.57; 五年影响因子:4.463 )

ISSN: 0721-7714

年卷期: 2008 年 27 卷 6 期

页码:

收录情况: SCI

摘要: Retrotransposons, the important component of eukaryotic genome, are seeds of evolution and play great role in creating new genes. The compact Arabidopsis genome harbors over 200 Copia-like retrotransposons, but mostly silent. Here we isolated an expressed gene AtCopeg1 (Copia evolved gene 1), which shows higher than 90% identity to AtCopia95_I, the consensus sequence encoding AtCopia95 polyprotein. AtCopeg1 is the unique gene evolved from AtCopia95 family. It is an intron-containing gene with two alternative 3' ends. The transcript accumulation of AtCopeg1 is tissue-specific, also significantly affected by external hormones and abiotic stresses. The presence of regulatory elements in its promoter region (originating from AtCopia95_I and AtCopia95 long terminal repeat), is adequate for conferring its essential expression feature. Thus, AtCopeg1 is a versatile functional gene involved in many developmental and adaptive processes probably including the signaling crosstalk of hormone and nutrient stress. Our work highlighted the role of transposable elements in creating new functional genes, and will incite the enthusiasm for isolation and functional characterization of plant genes evolved from those previously considered as selfish and junk DNA.

  • 相关文献

[1]A semi-rational design strategy of directed evolution combined with chemical synthesis of DNA sequences. Xiong, Ai-Sheng,Peng, Ri-He,Zhuang, Jing,Liu, Jin-Ge,Gao, Feng,Xu, Fang,Cai, Bin,Yao, Quan-Hong.

[2]AtCPK6, a functionally redundant and positive regulator involved in salt/drought stress tolerance in Arabidopsis. Xu, Jing,Tian, Yong-Sheng,Peng, Ri-He,Xiong, Ai-Sheng,Zhu, Bo,Jin, Xiao-Fen,Gao, Feng,Fu, Xiao-Yan,Yao, Quan-Hong,Xu, Jing,Hou, Xi-Lin. 2010

[3]AtMYB12 regulates flavonoids accumulation and abiotic stress tolerance in transgenic Arabidopsis thaliana. Wang, Feibing,Peng, Rihe,Li, Zhenjun,Yao, Quanhong,Kong, Weili,Wong, Gary,Fu, Lifeng.

[4]Overexpression of a bacterial mercury transporter MerT in Arabidopsis enhances mercury tolerance. Xu, Sheng,Sun, Bin,Wang, Rong,He, Jia,Xia, Bing,Wang, Ren,Xu, Sheng,Sun, Bin,Wang, Rong,He, Jia,Xia, Bing,Wang, Ren,Xue, Yong.

[5]Isolated and characterization of a cDNA encoding ethylene-responsive element binding protein (EREBP)/AP2-type protein, RCBF2, in Oryza sativa L.. Liu, Jin-Ge,Zhang, Zhen,Qin, Qiu-Lin,Peng, Ri-He,Xiong, Ai-Sheng,Chen, Jian-Min,Xu, Fang,Zhu, Hong,Yao, Quan-Hong.

[6]The Antirrhinum AmDEL gene enhances flavonoids accumulation and salt and drought tolerance in transgenic Arabidopsis. Wang, Feibing,Peng, Rihe,Yao, Quanhong,Zhu, Hong,Liu, Qingchang,Kong, Weili.

[7]Phytoremediation potential of Arabidopsis with reference to acrylamide and microarray analysis of acrylamide-response genes. Gao, Jian-Jie,Peng, Ri-He,Zhu, Bo,Wang, Bo,Wang, Li-Juan,Xu, Jing,Sun, Miao,Yao, Quan-Hong.

[8]Transcription factor OsAP21 gene increases salt/drought tolerance in transgenic Arabidopsis thaliana. Jin, Xiaofeng,Xue, Yong,Xu, RanRan,Bian, Lin,Zhu, Bo,Han, Hongjuan,Peng, Rihe,Yao, Quanhong,Wang, Ren.

[9]Enhancement of phenol stress tolerance in transgenic Arabidopsis plants overexpressing glutathione S-transferase. Xu, Jing,Tian, Yong-Sheng,Xing, Xiao-Juan,Xu, Zhi-Sheng,Zhu, Bo,Fu, Xiao-Yan,Peng, Ri-He,Yao, Quan-Hong.

[10]A novel Cys(2)/His(2) zinc finger protein gene from sweetpotato, IbZFP1, is involved in salt and drought tolerance in transgenic Arabidopsis. Wang, Feibing,Peng, Rihe,Yao, Quanhong,Zhu, Hong,Liu, Qingchang,Tong, Wenjie,Kong, Weili.

[11]Yeast copper-dependent transcription factor ACE1 enhanced copper stress tolerance in Arabidopsis. Xu, Jing,Tian, Yong-Sheng,Peng, Ri-He,Xiong, Ai-Sheng,Zhu, Bo,Jin, Xiao-Fen,Gao, Jian-Jie,Yao, Quan-Hong,Xu, Jing,Gao, Jian-Jie,Hou, Xi-Lin.

[12]Expression and Function of a Modified AP2/ERF Transcription Factor from Brassica napus Enhances Cold Tolerance in Transgenic Arabidopsis. Xiong, Ai-Sheng,Wang, Feng,Jiang, Hai-Hua,Peng, Ri-He,Jin, Xiao-Fen,Zhu, Bo,Yao, Quan-Hong,Zhuang, Jing,Zhang, Jian.

[13]Expression of a rice DREB1 gene, OsDREB1D, enhances cold and high-salt tolerance in transgenic Arabidopsis. Zhang, Yang,Chen, Chen,Jin, Xiao-Fen,Xiong, Ai-Sheng,Peng, Ri-He,Yao, Quan-Hong,Zhang, Yang,Chen, Chen,Hong, Yi-Huan,Chen, Jian-Min.

[14]Invasive ornamental plants: Problems, challenges, and molecular tools to neutralize their invasiveness. Li, Y,Cheng, ZM,Smith, WA,Ellis, DR,Chen, YQ,Zheng, XL,Pei, Y,Luo, KM,Zhao, DG,Yao, QH,Duan, H,Li, Q.

[15]Identification of candidate genes involved in responses of Arabidopsis to polychlorinated biphenyls based on microarray analysis. Jin, Xiao-Fen,Shuai, Jian-Jun,Peng, Ri-He,Zhu, Bo,Fu, Xiao-Yan,Tian, Yong-Sheng,Zhao, Wei,Han, Hong-Juan,Chen, Chen,Xu, Jing,Yao, Quan-Hong,Xiong, Ai-Sheng,Qu, Shen-Chun.

[16]Stress responses to trichlorophenol in Arabidopsis and integrative analysis of alteration in transcriptional profiling from microarray. Li, Zhenjun,Zhu, Bo,Wang, Bo,Gao, Jianjie,Fu, Xiaoyan,Yao, Quanhong.

[17]Stress responses to phenol in Arabidopsis and transcriptional changes revealed by microarray analysis. Xu, Jing,Chen, Chen,Han, Hong-Juan,Zhu, Bo,Fu, Xiao-Yan,Zhao, Wei,Jin, Xiao-Fen,Yao, Quan-Hong,Su, Zhen-Hong,Wu, Ai-Zhong,Su, Zhen-Hong.

[18]Microarray analysis of differentially expressed gene responses to bisphenol A in Arabidopsis. Tian, Yong-Sheng,Jin, Xiao-Fen,Fu, Xiao-Yan,Zhao, Wei,Han, Hong-Juan,Zhu, Bo,Yao, Quan-Hong,Tian, Yong-Sheng,Man-Liu.

[19]Phytoremediation and phytosensing of chemical contaminant, toluene: identification of the required target genes. Gao, Jian-Jie,Shen, Xue-Fang,Peng, Ri-He,Zhu, Bo,Xu, Jing,Han, Hong-juan,Yao, Quan-Hong,Shen, Xue-Fang.

[20]A Vitis vinifera xanthine dehydrogenase gene, VvXDH, enhances salinity tolerance in transgenic Arabidopsis. You, Shuanghong,Sun, Miao,Zhu, Bo,Wang, Feibing,Han, Hongjuan,Zhu, Hengweng,Peng, Rihe,Yao, Quanhong.

作者其他论文 更多>>