您好,欢迎访问吉林省农业科学院 机构知识库!

Detection of QTLs controlling fast kernel dehydration in maize (Zea mays L.)

文献类型: 外文期刊

作者: Qian, Y. L. 1 ; Zhang, X. Q. 2 ; Wang, L. F. 3 ; Chen, J.; Chen, B. R.; Lv, G. H.; Wu, Z. C.; Guo, J. 1 ; Wang, 1 ;

作者机构: 1.Anhui Acad Agr Sci, Lab Maize Biotechnol, Tobacco Res Inst, Maize Res Ctr, Hefei, Anhui, Peoples R China

2.Anhui Acad Agr Sci, Crop Biotechnol Lab, Crops Res Inst, Hefei, Anhui, Peoples R China

3.Henan Acad Agr Sci, Cereal Crops Inst, Lab Maize Biotechnol, Zhengzhou, Peoples R China;

关键词: Maize;Silking stage;Physiological maturity stage;QTLs;Fast kernel dehydration

期刊名称:GENETICS AND MOLECULAR RESEARCH ( 影响因子:0.764; 五年影响因子:0.912 )

ISSN: 1676-5680

年卷期: 2016 年 15 卷 3 期

页码:

收录情况: SCI

摘要: In order to understand the effect of grain moisture of inbred lines at the silking and physiological maturity stages on kernel dehydration rate, 59 maize inbred lines from six subgroups were selected. Grain moisture was measured and QTLs associated with kernel dehydration were mapped. A rapid dehydration evaluation and association analysis revealed eight inbred lines with faster dehydration rate, including Yuanwu 02, K36, Zhonger/O2, Lo1125, Han 49, Qi 319, Hua 160, and PH4CV. A single sequence repeat analysis using 85 pairs detected five QTLs with phenotypic variation contribution >= 10% in the permanent F2 generation populations Zheng 58 x S1776 and Chang 7- 2 x K1131, which had LOD threshold values >= 3 in both 2013 and 2014. The chromosome region of qFkdr7b had not previously been reported and is preliminarily identified as a new major QTL. A false positive field verification of grain dehydration rate of 53 inbred lines indicated that the screening result of the rapid dehydration inbred lines by specific amplification with marker Phi114 was most similar to the field assessment result, followed by markers Phi127 and Phi029. The rapid dehydration lines selected based on primer Phi114 amplification were also similar to the field dehydration rate and can thus be used for molecular marker- assisted selection. A significant effort is needed to improve stress resistance and shorten the growth period via fast kernel dehydration in intermediate materials of the inbred lines K36, Zhonger/O2, Lo1125, Han 49, Hua 160, and PH4CV, and further using the selected lines for new combinations.

  • 相关文献

[1]控制稻米脂肪含量的QTLs分析. 吴长明,孙传清,陈亮,李自超,王象坤. 2000

[2]玉米倒伏影响因素及其QTL定位研究进展. 房海悦,李毅丹,曲文丽,具红光,金峰学. 2016

[3]玉米苗期耐碱性QTL定位分析. 马晓军,金峰学,晁青,张春宵,杨德光. 2014

[4]Identification of QTLs for plant height, ear height and grain yield in maize (Zea mays L.) in response to nitrogen and phosphorus supply. Cai, Hongguang,Chu, Qun,Gu, Riliang,Yuan, Lixing,Liu, Jianchao,Chen, Fanjun,Mi, Guohua,Zhang, Fusuo,Cai, Hongguang,Zhang, Xiuzhi.

[5]Transcriptome Profile Analysis of Maize Seedlings in Response to High-salinity, Drought and Cold Stresses by Deep Sequencing. Shan, Xiaohui,Yuan, Yaping,Li, Yidan,Jiang, Yu,Jiang, Zhilei,Hao, Wenyuan.

[6]Genome-Wide Identification of the Maize Calcium-Dependent Protein Kinase Gene Family. Ma, Pengda,Liu, Jingying,Yang, Xiangdong,Ma, Rui.

[7]Impacts of planting systems on soil moisture, soil temperature and corn yield in rainfed area of Northeast China. Song, Zhenwei,Zhang, Zhenping,Kou, Taiji,Deng, Aixing,Zheng, Chengyan,Zhang, Weijian,Guo, Jinrui,Ren, Jun,Zhang, Zhenping,Kou, Taiji.

[8]Identification of quantitative trait loci for leaf area and chlorophyll content in maize (Zea mays) under low nitrogen and low phosphorus supply. Cai, Hongguang,Chu, Qun,Yuan, Lixing,Liu, Jianchao,Chen, Xiaohui,Chen, Fanjun,Mi, Guohua,Zhang, Fusuo,Cai, Hongguang.

[9]Establishment and optimization of a regionally applicable maize gene-flow model. Luo, Weihong,Hu, Ning,Hu, Jichao,Jiang, Xiaodong,Chen, Wanlong,Yao, Kemin,Lu, Zongzhi,Peng, Yufa,Zhang, Ming,Jia, Shirong,Pei, Xinwu.

[10]Meta-analysis of constitutive QTLs for disease resistance in maize and its synteny conservation in the rice genome. Zhao, L.,Wang, Q. Y.,Liu, H. J.,Zhang, C. X.,Li, X. H.. 2015

[11]EFFECT OF PLANT GROWTH REGULATORS ON MAIZE (ZEA MAYS L.) AGRONOMIC CHARACTERISTICS, STALK LODGING AND YIELD UNDER HIGH PLANTING DENSITY IN NORTHEAST CHINA. Cao, Qingjun,Song, Fengbin,Cao, Qingjun,Gang, Li,Yang, Fentuan,Yao, Liang,Cao, Qingjun,Diallo, Lamine,Cui, Jinhu. 2016

[12]Response of root morphology, physiology and endogenous hormones in maize (Zea mays L.) to potassium deficiency. Zhao Xin-hue,Yu Hai-qiu,Wen Jing,Wang Xiao-guang,Du Qi,Wang Jing,Wang Qiao,Wen Jing. 2016

[13]Genome-wide analysis of the maize (Zea may L.) CPP-like gene family and expression profiling under abiotic stress. Song, X. Y.,Zhang, Y. Y.,Wu, F. C.,Zhang, L.. 2016

[14]Effect of environmental conditions on the genotypic difference in nitrogen use efficiency in maize. Cai Hong-Guang,Mi Guo-Hua,Chen Fan-Jun,Cai Hong-Guang,Gao Qiang. 2011

[15]QTL mapping of resistance to Sporisorium reiliana in maize. Lubberstedt, T,Xia, XC,Tan, G,Liu, X,Melchinger, AE. 1999

[16]Research Progress on Transformation Maize Mediated by Agrobacterithm Tumefaciens. Li, Xiuping,Li, Xiuping,Jiang, Lijing,Liu, Na. 2011

[17]Enhancing phosphorus uptake efficiency through QTL-based selection for root system architecture in maize. Gu, Riliang,Chen, Fanjun,Long, Lizhi,Cai, Hongguang,Liu, Zhigang,Yang, Jiabo,Wang, Lifeng,Mi, Guohua,Zhang, Fusuo,Yuan, Lixing,Gu, Riliang,Li, Huiyong,Li, Junhui,Cai, Hongguang,Wang, Lifeng,Li, Huiyong. 2016

[18]Inhibition of the spread of endophytic Sporisorium reilianum renders maize resistance to head smut. Zhao, Xianrong,Ye, Jianrong,Wei, Lai,Zhang, Nan,Zuo, Weiliang,Chao, Qing,Xu, Mingliang,Zhao, Xianrong,Xing, Yuexian,Tan, Guoqing,Chao, Qing. 2015

[19]Large-scale analysis of phosphorylated proteins in maize leaf. Bi, Ying-Dong,Lu, Tian-Cong,Shen, Zhuo,Chen, Yi-Bo,Wang, Bai-Chen,Bi, Ying-Dong,Lu, Tian-Cong,Shen, Zhuo,Chen, Yi-Bo,Wang, Bai-Chen,Bi, Ying-Dong,Wang, Hong-Xia,Li, Xiao-hui.

[20]Marker-assisted introgression of qHSR1 to improve maize resistance to head smut. Zhao, Xianrong,Wei, Lai,Chao, Qing,Zuo, Weiliang,Xu, Mingliang,Tan, Guoqing,Xing, Yuexian,Luebberstedt, Thomas.

作者其他论文 更多>>