Genetic Dissection of Quantitative Resistance to Common Rust (Puccinia sorghi) in Tropical Maize (Zea mays L.) by Combined Genome-Wide Association Study, Linkage Mapping, and Genomic Prediction
文献类型: 外文期刊
作者: Ren, Jiaojiao 1 ; Li, Zhimin 2 ; Wu, Penghao 1 ; Zhang, Ao 4 ; Liu, Yubo 5 ; Hu, Guanghui 6 ; Cao, Shiliang 6 ; Qu, Jingt 1 ;
作者机构: 1.Xinjiang Agr Univ, Coll Agron, Urumqi, Peoples R China
2.Int Maize & Wheat Improvement Ctr CIMMY1, Texcoco, Mexico
3.Henan Agr Univ, Coll Agron, Zhengzhou, Peoples R China
4.Shenyang Agr Univ, Coll Biosci & Biotechnol, Shenyang, Peoples R China
5.Shanghai Acad Agr Sci, CIMMYT China Specialty Maize Res Ctr, Crop Breeding & Cultivat Res Inst, Shanghai, Peoples R China
6.Heilongjiang Acad Agr Sci, Maize Res Inst, Harbin, Peoples R China
7.Sichuan Agr Univ, Maize Res Inst, Chengdu, Peoples R China
8.Int Maize & Wheat Improvement Ctr CIMMYT, Nairobi, Kenya
关键词: maize; common rust; quantitative resistance; genome-wide association study; linkage mapping; genomic prediction
期刊名称:FRONTIERS IN PLANT SCIENCE ( 影响因子:5.754; 五年影响因子:6.612 )
ISSN: 1664-462X
年卷期: 2021 年 12 卷
页码:
收录情况: SCI
摘要: Common rust is one of the major foliar diseases in maize, leading to significant grain yield losses and poor grain quality. To dissect the genetic architecture of common rust resistance, a genome-wide association study (GWAS) panel and a bi-parental doubled haploid (DH) population, DH1, were used to perform GWAS and linkage mapping analyses. The GWAS results revealed six single-nucleotide polymorphisms (SNPs) significantly associated with quantitative resistance of common rust at a very stringent threshold of P-value 3.70 x 10(-6) at bins 1.05, 1.10, 3.04, 3.05, 4.08, and 10.04. Linkage mapping identified five quantitative trait loci (QTL) at bins 1.03, 2.06, 4.08, 7.03, and 9.00. The phenotypic variation explained (PVE) value of each QTL ranged from 5.40 to 12.45%, accounting for the total PVE value of 40.67%. Joint GWAS and linkage mapping analyses identified a stable genomic region located at bin 4.08. Five significant SNPs were only identified by GWAS, and four QTL were only detected by linkage mapping. The significantly associated SNP of S10_95231291 detected in the GWAS analysis was first reported. The linkage mapping analysis detected two new QTL on chromosomes 7 and 10. The major QTL on chromosome 7 in the region between 144,567,253 and 149,717,562 bp had the largest PVE value of 12.45%. Four candidate genes of GRMZM2G328500, GRMZM2G162250, GRMZM2G114893, and GRMZM2G138949 were identified, which played important roles in the response of stress resilience and the regulation of plant growth and development. Genomic prediction (GP) accuracies observed in the GWAS panel and DH1 population were 0.61 and 0.51, respectively. This study provided new insight into the genetic architecture of quantitative resistance of common rust. In tropical maize, common rust could be improved by pyramiding the new sources of quantitative resistance through marker-assisted selection (MAS) or genomic selection (GS), rather than the implementation of MAS for the single dominant race-specific resistance gene.
- 相关文献
作者其他论文 更多>>
-
Exploiting genomic tools for genetic dissection and improving the resistance to Fusarium stalk rot in tropical maize
作者:Song, Junqiao;Wang, Chunping;Song, Junqiao;Liu, Yubo;Guo, Rui;Pacheco, Angela;Munoz-Zavala, Carlos;Song, Wei;Wang, Hui;Cao, Shiliang;Hu, Guanghui;Dhliwayo, Thanda;San Vicente, Felix;Zhang, Xuecai;Song, Junqiao;Liu, Yubo;Wang, Hui;Zheng, Hongjian;Guo, Rui;Song, Wei;Cao, Shiliang;Hu, Guanghui;Prasanna, Boddupalli M.;Zhang, Xuecai;Zhang, Xuecai
关键词:
-
Genome-wide association mapping and genomic prediction of stalk rot in two mid-altitude tropical maize populations
作者:Song, Junqiao;Wang, Chunping;Song, Junqiao;Pacheco, Angela;Alakonya, Amos;Cruz-Morales, Andrea S.;Munoz-Zavala, Carlos;Zhang, Xuecai;San Vicente, Felix;Dhliwayo, Thanda;Song, Junqiao;Qu, Jingtao
关键词:Maize stalk rot; Genome-wide association mapping; Haplotype analysis; Genomic prediction; G x E interaction
-
Integrative transcriptome and metabolome analysis reveals the mechanisms of light-induced pigmentation in purple waxy maize
作者:Lu, Yuan;Yu, Yao;Kari, Ayiguli;Yang, Caixia;Wang, Chenyu;Zhang, Chao;Gu, Wei;Wang, Hui;Hu, Yingxiong;Sun, Pingdong;Guan, Yuan;Zheng, Hongjian;Lu, Yuan;Yu, Yao;Kari, Ayiguli;Yang, Caixia;Wang, Chenyu;Zhang, Chao;Gu, Wei;Wang, Hui;Hu, Yingxiong;Sun, Pingdong;Guan, Yuan;Xu, Yunbi;Zheng, Hongjian;Lu, Yuan;Yu, Yao;Kari, Ayiguli;Yang, Caixia;Wang, Chenyu;Zhang, Chao;Gu, Wei;Wang, Hui;Hu, Yingxiong;Sun, Pingdong;Guan, Yuan;Zheng, Hongjian;Lu, Yuan;Yu, Yao;Kari, Ayiguli;Yang, Caixia;Wang, Chenyu;Zhang, Chao;Gu, Wei;Wang, Hui;Hu, Yingxiong;Sun, Pingdong;Guan, Yuan;Zheng, Hongjian;Xuan, Yanfang;Si, Wenshuai;Bai, Bing;Zhang, Xuecai;Xu, Yunbi;Xu, Yunbi;Prasanna, Boddupalli M.;Shi, Biao
关键词:waxy maize; anthocyanin; light; transcriptomics; metabolomics
-
Complete Genome Sequence Data of Novel Streptomyces angustmyceticus Strain CQUSa03, a Potential Biological Control Agent for Potato Oomycete and Fungal Diseases
作者:Luo, Xiumei;Ren, Maozhi;Qu, Jingtao
关键词:biocontrol; fungal disease; genome sequence; potato late blight; Streptomyces angustmyceticus
-
Genome-Wide Association Study and Genomic Prediction on Plant Architecture Traits in Sweet Corn and Waxy Corn
作者:Dang, Dongdong;Zhang, Ao;Ruan, Yanye;Qin, Li;Dang, Dongdong;Guan, Yuan;Zheng, Hongjian;Wang, Hui;Dang, Dongdong;Zhang, Xuecai
关键词:genome-wide association study; genomic prediction; plant height; ear height; tassel branch number; sweet corn; waxy corn
-
Genome-wide association study of ear tip barrenness in waxy maize
作者:Song, Xudong;Zhou, Guangfei;Zhang, Zhenliang;Zhang, Huiming;Xue, Lin;Shi, Mingliang;Lu, Huhua;Mao, Yuxiang;Chen, Guoqing;Huang, Xiaolan;Hao, Derong;Xue, Lin;Chen, Guoqing;Wang, Hui;Zheng, Hongjian;Wang, Hui;Zheng, Hongjian
关键词:waxy maize; ear tip barrenness; genome-wide association study; favorable allele
-
Genome-wide association study presents insights into the genetic architecture of drought tolerance in maize seedlings under field water-deficit conditions
作者:Chen, Shan;Dang, Dongdong;Ji, Shuwen;Dong, Xiaomei;Li, Cong;Zhang, Ao;Ruan, Yanye;Dang, Dongdong;Liu, Yubo;Zheng, Hongjian;Guan, Yuan;Dang, Dongdong;Liu, Yubo;Zheng, Hongjian;Guan, Yuan;Zhao, Chenghao
关键词:maize (Zea mays L.); genome-wide association study; seedling stage; field drought tolerance; SNPs