Association of maize (Zea mays L.) senescence with water and nitrogen utilization under different drip irrigation systems
文献类型: 外文期刊
作者: Wu, Yang 1 ; Yao, Fanyun 2 ; Wang, Yongjun 2 ; Ma, Lin 3 ; Li, Xiangnan 4 ;
作者机构: 1.Jiujiang Univ, Inst Jiangxi Oil Tea Camellia, Jiujiang, Peoples R China
2.Jilin Acad Agr Sci, Inst Agr Resource & Environm, Changchun, Peoples R China
3.Chinese Acad Agr Sci, Inst Anim Sci, Beijing, Peoples R China
4.Chinese Acad Sci, Northeast Inst Geog & Agroecol, Changchun, Peoples R China
5.Univ Chinese Acad Sci, Coll Adv Agr Sci, Beijing, Peoples R China
关键词: leaf nitrogen; live root; green leaf area; water use efficiency; nitrogen use efficiency; drip irrigation
期刊名称:FRONTIERS IN PLANT SCIENCE ( 影响因子:5.6; 五年影响因子:6.8 )
ISSN: 1664-462X
年卷期: 2023 年 14 卷
页码:
收录情况: SCI
摘要: IntroductionDrip irrigation is an efficient water-saving system used to improve crop production worldwide. However, we still lack a comprehensive understanding of maize plant senescence and its association with yield, soil water, and nitrogen (N) utilization under this system. MethodsA 3-year field experiment in the northeast plains of China was used to assess four drip irrigation systems: (1) drip irrigation under plastic film mulch (PI); (2) drip irrigation under biodegradable film mulch (BI); (3) drip irrigation incorporating straw returning (SI); and (4) drip irrigation with the tape buried at a shallow soil depth (OI), and furrow irrigation (FI) was used as the control. The plant senescence characteristic based on the dynamic process of green leaf area (GLA) and live root length density (LRLD) during the reproductive stage, and its correlation with leaf N components, water use efficiency (WUE), and N use efficiency (NUE) was investigated. ResultsPI followed by BI achieved the highest integral GLA and LRLD, grain filling rate, and leaf and root senescence rate after silking. Greater yield, WUE, and NUE were positively associated with higher N translocation efficiency of leaf protein responding for photosynthesis, respiration, and structure under PI and BI; whereas, no significant differences were found in yield, WUE, and NUE between PI and BI. SI effectively promoted LRLD in the deeper 20- to 100-cm soil layers, prolonged the GLA and LRLD persistent durations, and reduced the leaf and root senescence rates. The remobilization of non-protein storage N was stimulated by SI, FI, and OI, which made up for the relative inadequacy of leaf N. DiscussionInstead of persistent GLA and LRLD durations and high translocation efficiency of non-protein storage N, fast and large protein N translocation from leaves to grains under PI and BI was found to facilitate maize yield, WUE, and NUE in the sole cropping semi-arid region, and BI was recommend considering that it can reduce plastic pollution.
- 相关文献
作者其他论文 更多>>
-
Intercropping outweighs straw incorporation driving community and functional diversity of microarthropods after 5 years of tillage practices
作者:Liu, Yuhang;Gao, Qiang;Sun, Xin;Wang, Bin;Sun, Xin;Liu, Yuhang;Wang, Yongjun;Yao, Fanyun;Wang, Bin;Sun, Xin;Wu, Haitao;Sun, Xin
关键词:Maize-peanut intercropping; Microarthropods; Straw incorporation; Sustainable agriculture
-
Leveraging cover crop functional traits and nitrogen synchronization for yield-optimized waxy corn production systems
作者:Sun, Mengjing;Zhang, Long;Zhou, Jiangkuo;Liu, Ziping;Peng, Cong;Jia, Zechen;Lv, Yanjie;Wang, Yongjun;Sun, Mengjing;Zhang, Long;Zhou, Jiangkuo;Liu, Ziping;Peng, Cong;Jia, Zechen;Lv, Yanjie;Wang, Yongjun;Sun, Mengjing;Zhang, Long;Zhou, Jiangkuo;Liu, Ziping;Peng, Cong;Jia, Zechen;Lv, Yanjie;Wang, Yongjun
关键词:waxy corn; cover crop; yield; nitrogen use efficiency; path analysis
-
Integrating physiological, metabolome and transcriptome revealed the response of maize seeds to combined cold and high soil moisture stresses
作者:Meng, Xiangzeng;Wang, Lichun;Wang, Yongjun;Meng, Xiangzeng;Cao, Yujun;Lv, Yanjie;Wang, Lichun;Wang, Yongjun
关键词:
-
The effects of a combination of maize/peanut intercropping and residue return on soil microbial nutrient limitation in maize fields
作者:Yao, Fanyun;Cao, Yujun;Liang, Jie;Liu, Xiaodan;Liu, Zhiming;Lv, Yanjie;Wei, Wenwen;Xu, Wenhua;Wang, Yongjun;Qi, Wei;Wang, Yongjun;Yu, Yang;Li, Xiang;Feng, Jian
关键词:Soil nutrients; Microbial biomass; Extracellular enzymes; C:N:P stoichiometry; Nutrient limitation
-
Thriving in adversity: Understanding how maize seeds respond to the challenge of combined cold and high humidity stress
作者:Meng, Xiangzeng;Chen, Denglong;Wang, Yongjun;Wang, Lichun;Meng, Xiangzeng;Chen, Denglong;Lv, Yanjie;Xu, Wenhua;Wang, Yongjun;Wang, Lichun
关键词:Seed germination; Abiotic stress; Antioxidant enzyme; Metabolomic; Glycolysis
-
Elimination of Intraspecific Competition Does Not Improve Maize Leaf Physiological and Biochemical Responses to Topsoil Degradation
作者:Zhang, Shan;Jia, Zechen;Lv, Yanjie;Wang, Yongjun;Zhang, Shan;Guo, Zhongxiao;Lv, Yanjie;Wang, Yongjun;Zhang, Xiaolong;Liu, Kaichang
关键词:topsoil depth; maize planting density; intraspecific competition; nitrogen metabolism enzymes; photosynthesis enzymes; yield variability
-
Increased topsoil depth required to support increased grain yield production in high density maize
作者:Zhang, Xiaolong;Kong, Yuanyuan;Shao, Xiwen;Geng, Yanqiu;Wang, Lichun;Wang, Yongjun;Zhang, Xiaolong;Kong, Yuanyuan;Lv, Yanjie;Yao, Fanyun;Cao, Yujun;Wang, Lichun;Wang, Yongjun
关键词:Grain yield; Harvest index; Root characteristics; Leaf area index; Net photosynthetic rate



