您好,欢迎访问浙江省农业科学院 机构知识库!

Association Mapping of Ferrous, Zinc, and Aluminum Tolerance at the Seedling Stage in Indica Rice using MAGIC Populations

文献类型: 外文期刊

作者: Meng, Lijun 2 ; Wang, Baoxiang 3 ; Zhao, Xiangqian 2 ; Ponce, Kimberly 2 ; Qian, Qian 1 ; Ye, Guoyou 1 ;

作者机构: 1.Chinese Acad Agr Sci, CAAS IRRI Joint Lab Genom Assisted Germplasm Enha, Agr Genom Inst Shenzhen, Shenzhen, Peoples R China

2.Int Rice Res Inst, Rice Breeding Platform, Manila, Philippines

3.Jiangsu Acad Agr Sci, Lianyungang Inst Agr Sci Jiangsu Xuhuai Reg, Lianyungang, Peoples R China

4.Zhejiang Acad Agr Sci, Inst Crop Sci & Nucl Technol Utilizat, Hangzhou, Zhejiang, Peoples R China

关键词: metal tolerance;seedling stage;MAGIC population;association mapping;rice

期刊名称:FRONTIERS IN PLANT SCIENCE ( 影响因子:5.753; 五年影响因子:6.612 )

ISSN: 1664-462X

年卷期: 2017 年 8 卷

页码:

收录情况: SCI

摘要: Excessive amounts of metal are toxic and severely affect plant growth and development. Understanding the genetic control of metal tolerance is crucial to improve rice resistance to Fe, Zn, and Al toxicity. The multi-parent advanced generation inter-cross (MAGIC) populations were genotyped using a 55 K rice SNP array and screened at the seedling stage for Fe, Zn, and Al toxicity using a hydroponics system. Association analysis was conducted by implementing a mixed linear model (MLM) for each of the five MAGIC populations double cross DC1 (founders were SAGC-08, HHZ5-SAL9-Y3-Y1, BP1976B-2-3-7-TB-1-1, PR33282-B-8-1-1-1-1-1), double cross DC2 (founders of double cross were FFZ1, CT 16658-5-2-2SR-2-3-6MP, IR 68, IR 02A127), eight parents population 8way (founders were SAGC-08, HHZ5-SAL9-Y3-Y1, BP1976B-2-3-7-TB-1-1, PR33282-B-8-1-1-1-1-1, FFZ1, CT 16658-5-2-2SR-2-3-6MP, IR 68, IR 02A127), DC12 (DC1+DC2) and rice multi-parent recombinant inbred line population RMPRIL (DC1+DC2+8way). A total of 21, 30, and 21 QTL were identified for Fe, Zn, and Al toxicity tolerance, respectively. For multi tolerance (MT) as Fe, Zn, and Al tolerance-related traits, three genomic regions, MT1.1 (chr.1: 35.4-36.3 Mb), MT1.2 (chr.1: 35.4-36.3 Mb), and MT3.2 (chr.3: 35.4-36.2 Mb) harbored QTL. The chromosomal regions MT2.1 (chr.2: 2.4-2.8 Mb), MT2.2 (chr.2: 24.5-25.8 Mb), MT4 (chr.4: 1.2 Mb Mb), MT8.1 (chr.8: 0.7-0.9 Mb), and MT8.2 (chr.8: 2.2-2.4 Mb) harbored QTL for Fe and Zn tolerance, while MT2.3 (chr.2: 30.5-31.6 Mb), MT3.1 (chr.3: 12.5-12.8 Mb), and MT6 (chr.6: 2.0-3.0 Mb) possessed QTL for Al and Zn tolerance. The chromosomal region MT9.1 (chr.9: 14.2-14.7 Mb) possessed QTL for Fe and Al tolerance. A total of 11 QTL were detected across different MAGIC populations and 12 clustered regions were detected under different metal conditions, suggesting that these genomic regions might constitute valuable regions for further marker-assisted selection (MAS) in breeding programs.

  • 相关文献

[1]Association Mapping and Marker Development of Genes for Starch Lysophospholipid Synthesis in Rice. Tong Chuan,Bao Jin-Song,Tong Chuan,Liu Lei,Waters, Daniel L. E.. 2016

[2]Association mapping of quantitative trait loci for yield-related agronomic traits in rice (Oryza sativa L.). Xu Fei-fei,Huang Yan,Tong Chuan,Chen Ya-ling,Bao Jin-song,Jin Liang. 2016

[3]Genome-wide Association Mapping of Quantitative Trait Loci (QTLs) for Contents of Eight Elements in Brown Rice (Oryza sativa L.). Nawaz, Zarqa,Kakar, Kaleem U.,Li, Shan,Shu, Qing-yao,Shu, Qing-yao,Li, Xiao-bai,Zhang, Bin,Shou, Hui-xia.

[4]Genome wide linkage disequilibrium in Chinese asparagus bean (Vigna. unguiculata ssp. sesquipedialis) germplasm: Implications for domestication history and genome wide association studies. Xu, P.,Wu, X.,Wang, B.,Liu, Y.,Lu, Z.,Wang, S.,Li, G.,Luo, J.,Ehlers, J. D.,Close, T. J.,Roberts, P. A..

[5]Modeling and Analyzing the Influence of Blade Shape on Rice Canopy Structure. Liyong Cao,Dong Li,Junmin Wang,Zhigang Zhan. 2012

[6]Modeling and analyzing the influence of blade shape on rice canopy structure. Li, Dong,Wang, Junmin,Zhan, Zhigang,Cao, Liyong. 2012

[7]Mapping of leaf and neck blast resistance genes with RFLP, RAPD and resistance gene analogs in rice. K.-L. ZHENG,R.-Y. CHAI,M.-Z. JIN,J.-L. WU,Y.-Y. FAN,H. LEUNG,J.-Y. ZHUANG. 2000

[8]Monitoring Leaf Chlorophyll Fluorescence with Spectral Reflectance in Rice (Oryza sativa L.). Hao Zhang,Lian-feng Zhu,Hao Hu,Ke-feng Zheng,Qian-yu Jin. 2011

[9]DEVELOPMENT AND APPLICATION OF THE CONSULTING SYSTEM OF PRECISION FERTILIZATION IN RICE. Xiaonan Lii,Wanzhu Ma,Zhouqiao Ren,Xiaojia Chen. 2005

[10]Effects of Nitrogenous Fertilization in Rice Fields on the Predatory Function ofCyrtorhinus Lividipennis to Nilaparvata lugens Stal. LU Zhongxian,YU Xiaoping,HEONG Kongluen,HU Cui. 2008

[11]Resistance Performances of Transgenic Bt Rice Lines T-2A-1 and T1c-19 Against Cnaphalocrocis medinalis (Lepidoptera: Pyralidae). Zheng, Xusong,Yang, Yajun,Xu, Hongxing,Wang, Baoju,Lu, Zhongxian,Zheng, Xusong,Yang, Yajun,Xu, Hongxing,Wang, Baoju,Lu, Zhongxian,Chen, Hao,Lin, Yongjun,Chen, Hao,Lin, Yongjun. 2011

[12]Differentiation of a Miniature Inverted Transposable Element (MITE) system in Asian rice cultivars and its inference for a diphyletic origin of two subspecies of Asian cultivated rice. Hu, H,Mu, J,Zhang, HJ,Tao, YZ,Han, B. 2006

[13]Phosphorus Adsorption and Bioavailability in a Paddy Soil Amended with Pig Manure Compost and Decaying Rice Straw. Liang, Yongchao,Guo, Bin,Liang, Yongchao,Li, Zhaojun,Han, Fengxiang. 2009

[14]Nitrogen management to reduce yield-scaled global warming potential in rice. Liang, X. Q.,Ye, Y. S.,Ji, Y. J.,Tian, G. M.,Li, H.,Wang, S. X.,van Kessel, C.,Linquist, B. A.. 2013

[15]Suppression of OsMADS7 in rice endosperm stabilizes amylose content under high temperature stress. Zhang, Hua,Xu, Heng,Feng, Mengjie,Zhu, Ying. 2018

[16]Agrobacterium-mediated transformation efficiency is altered in a novel rice bacterial blight resistance cultivar and is influenced by environmental temperature. Dong, Rui-xian,Chen, Juan,Wang, Xu-ming,Li, Jin-shan,Zhou, Jie,Yang, Yong,Yu, Chu-lang,Cheng, Ye,Yan, Cheng-qi,Chen, Jian-ping,Dong, Rui-xian,Chen, Juan,Li, Jin-shan. 2012

[17]Characterization and mapping of a novel mutant sms1 (senescence and male sterility 1) in rice. Yan, Wenyi,Zeng, Longjun,Peng, Yu,Yan, Dawei,Yang, Weibing,Yang, Donglei,He, Zuhua,Yan, Wenyi,Dong, Yanjun,Yan, Wenyi,Ye, Shenghai,Jin, Qingsheng,Zhang, Xiaoming. 2010

[18]Identification and Classification of Rice Leaf Blast Based on Multi-Spectral Imaging Sensor. Lou Bing-gar,Feng Lei,Sun Guang-ming,Wu Di,He Yong,Chai Rong-yao. 2009

[19]Gibberellin homeostasis and plant height control by EUI and a role for gibberellin in root gravity responses in rice. Zhang, Yingying,Zhu, Yongyou,Peng, Yu,Yan, Dawei,Li, Qun,He, Zuhua,Wang, Jianjun,Wang, Linyou. 2008

[20]Sustainable Management of Rice Insect Pests by Non-Chemical-Insecticide Technologies in China. Xu Hong-xing,Yang Ya-jun,Lu Yan-hui,Zheng Xu-song,Tian Jun-ce,Lu Zhong-xian,Lai Feng-xiang,Fu Qiang. 2017

作者其他论文 更多>>