您好,欢迎访问新疆农业科学院 机构知识库!

An analysis of the polymorphisms in a gene for being involved in drought tolerance in maize

文献类型: 外文期刊

作者: Li, Liang 1 ; Hao, Zhuanfang 1 ; Li, Xinhai 1 ; Xie, Chuanxiao 1 ; Li, Mingshun 1 ; Zhang, Degui 1 ; Weng, Jianfeng 1 ; S 1 ;

作者机构: 1.Chinese Acad Agr Sci, Inst Crop Sci, Natl Key Facil Crop Genet Resources & Improvement, Beijing 100081, Peoples R China

2.Chinese Acad Agr Sci, Inst Crop Sci, Natl Key Facil Crop

关键词: Maize (Zea mays L.);ivr2 gene;Drought tolerance;Functional allelic polymorphism

期刊名称:GENETICA ( 影响因子:1.082; 五年影响因子:1.489 )

ISSN: 0016-6707

年卷期: 2011 年 139 卷 4 期

页码:

收录情况: SCI

摘要: Plant invertases catalyze the conversion of sucrose to glucose and fructose, which are distinct signals of widely varied stress-tolerance processes, including the biosynthesis and detection of hormones under water deficit. In the invertase gene family, the candidate gene ivr2 encoding plant acid-soluble invertase plays a vital role in drought tolerance. In this study, a putative genomic sequence of ivr2 including three exons and two introns was acquired and genetically analyzed using bioinformatics and statistics, based on a partial ivr2 gene sequence of the GenBank library. The ivr2 genomic sequence data from 106 maize inbred lines were obtained using five nested primer pairs. Further analysis showed that the detected polymorphic sites were mainly located in exon-1, intron-1 and exon-2 regions; High linkage disequilibrium level and low nucleotide diversity were identified at this ivr2 locus. Association mapping combined the genotypic and phenotypic data, and a total of 48 associations showed high contributions to the variations in grain yield and its components under well-watered and water-stressed conditions over 2 years of experiments. This suggested that functional polymorphisms in ivr2 were possibly associated with maize drought tolerance. This provides reference information for efficient marker-assisted selection of superior alleles in drought tolerance breeding programs.

  • 相关文献

[1]Identification of loci contributing to maize drought tolerance in a genome-wide association study. Wang, Nan,Lv, Xiang-ling,Li, Feng-hai,Wang, Zhen-ping,Jiang, Li-yan,Liang, Xiao-ling,Yang, Jie,Wang, Nan,Wang, Zhen-ping,Weng, Jian-feng,Zhang, De-gui,Yong, Hong-jun,Li, Ming-shun,Zhang, Shi-huang,Hao, Zhuan-fang,Li, Xin-hai.

[2]Identification of Functional Genetic Variations Underlying Drought Tolerance in Maize Using SNP Markers. Hao, Zhuanfang,Li, Xinhai,Xie, Chuanxiao,Weng, Jianfeng,Li, Mingshun,Zhang, Degui,Liu, Lingling,Liu, Sisi,Zhang, Shihuang,Liang, Xiaoling. 2011

[3]Trends of grain yield and plant traits in Chinese maize cultivars from the 1950s to the 2000s. Ci, Xiaoke,Li, Mingshun,Xu, Jiashun,Lu, Zhenyu,Bai, Pengfei,Ru, Gaolin,Zhang, Degui,Li, Xinhai,Bai, Li,Xie, Chuanxiao,Hao, Zhuanfang,Zhang, Shihuang,Ci, Xiaoke,Dong, Shuting,Liang, Xiaoling.

[4]Stability of QTL Across Environments and QTL-by-Environment Interactions for Plant and Ear Height in Maize. Zhang Yan,Li Yong-xiang,Wang Yang,Liu Zhi-zhai,Peng Bo,Tan Wei-wei,Wang Di,Shi Yun-su,Song Yan-chun,Wang Tian-yu,Li Yu,Liu Cheng,Sun Bao-cheng,Liu Zhi-zhai. 2010

[5]Mapping QTLs for drought tolerance in an F-2:3 population from an inter-specific cross between Gossypium tomentosum and Gossypium hirsutum. J.Y. Zheng,G. Oluoch,M.K. Riaz Khan,X.X. Wang,X.Y. Cai,Z.L. Zhou,C.Y. Wang,Y.H. Wang,X.Y. Li,F. Liu,K.B. Wang. 2016

[6]Association Analysis of the nced and rab28 Genes with Phenotypic Traits Under Water Stress in Maize. Su, Zhijun,Li, Xinhai,Hao, Zhuanfang,Xie, Chuanxiao,Li, Mingshun,Weng, Jianfeng,Zhang, Degui,Zhang, Shihuang,Su, Zhijun,Li, Xinhai,Hao, Zhuanfang,Xie, Chuanxiao,Li, Mingshun,Weng, Jianfeng,Zhang, Degui,Zhang, Shihuang,Liang, Xiaoling,Su, Zhijun,Wang, Zhigang,Gao, Julin.

[7]Overexpression of ScALDH21 gene in cotton improves drought tolerance and growth in greenhouse and field conditions. Yang, Honglan,Zhang, Daoyuan,Li, Xiaoshuang,Li, Haiyan,Wang, Jiancheng,Yang, Honglan,Lan, Haiyan,Zhang, Daoyuan,Wood, Andrew J..

[8]Numerous genetic loci identified for drought tolerance in the maize nested association mapping populations. Li, Chunhui,Li, Yongxiang,Wu, Xun,Zhang, Dengfeng,Shi, Yunsu,Song, Yanchun,Wang, Tianyu,Li, Yu,Sun, Baocheng,Liu, Cheng,Buckler, Edward S.,Buckler, Edward S.,Zhang, Zhiwu. 2016

[9]Simple nonlinear model for the relationship between maize yield and cumulative water amount. Liu Cheng,Yang Xiao-hong,Li Jian-sheng,Liu Cheng,Sun Bao-cheng,Tang Huai-jun,Xie Xiao-qing,Wang Tian-yu,Li Yu,Zhang Deng-feng,Shi Yun-su,Song Yan-chun. 2017

[10]Genetic location and evaluation of chromosomal segments for drought tolerance at flowering stage in maize using selected backcross populations. Li, Y.,Shi, Y.,Song, Y.,Wang, T.,Li, Y.,Liu, C..

[11]Trends in drought tolerance in Chinese maize cultivars from the 1950s to the 2000s. Sun, Qi,Zhang, Degui,Li, Xinhai,Hao, Zhuanfang,Weng, Jianfeng,Li, Mingshun,Zhang, Shihuang,Sun, Qi,Liang, Xiaoling.

作者其他论文 更多>>