您好,欢迎访问江苏省农业科学院 机构知识库!

Mapping a resistance gene in wheat cultivar Yangfu 9311 to yellow mosaic virus, using microsatellite markers

文献类型: 外文期刊

作者: Liu, WH 1 ; Nie, H 2 ; Wang, SB 2 ; Li, X 2 ; He, ZT 3 ; Han, CG; Wang, JR; Chen, XL; Li, LH; Yu, JL;

作者机构: 1.China Agr Univ, Natl Plant Gene Res Ctr Beijing, State Key Lab Agrobiotechnol, Beijing 100094, Peoples R China

2.China Agr Univ, Natl Plant Gene Res Ctr Beijing, State Key Lab Agrobiotechnol, Beijing 100094, Peoples R China; Chinese Acad Agr Sci, Inst Crop Germplasm Resources, Beijing 100081, Peoples R China; Jiangsu Acad Agr Sci, Inst Agr Sci Lixiahe Dist, Yangzhou 225207, Peoples R China

3.China Agr Univ, Natl Plant Gene Res Ctr Beijing, State Key Lab Agrobi

关键词: chromosome localization;SSR marker;wheat;yellow mosaic disease

期刊名称:THEORETICAL AND APPLIED GENETICS ( 影响因子:5.699; 五年影响因子:5.565 )

ISSN: 0040-5752

年卷期: 2005 年 111 卷 4 期

页码:

收录情况: SCI

摘要: Wheat yellow mosaic disease, which is caused by wheat yellow mosaic bymovirus (WYMV) and transmitted by soil-borne fungus, results in severe damage on wheat (Triticum aestivum L.) production in China. For development of resistant cultivars to reduce wheat yield losses due to wheat yellow mosaic disease, resistance test and genetic analysis indicated that a single dominant gene in wheat cultivar Yangfu 9311 contributed to the resistance. Bulk segregant analysis was used to identify microsatellite markers linked to the resistance gene in an F-2 population derived from the cross Yangfu 9311 (resistant) x Yangmai 10 (susceptible). Microsatellite markers Xwmc41, Xwmc181, Xpsp3039, and Xgwm349 were co-dominantly or dominantly linked with the gene responsible for WYMV resistance at a distance of 8.1-11.6 cM. Based on the wheat microsatellite consensus map and the results from amplification of the cultivar Chinese Spring nulli-tetrasomic stocks, the resistance gene to wheat yellow mosaic disease derived from Yangfu 9311, temporarily named as YmYF, was thus mapped on the long arm of chromosome 2D (2DL).

  • 相关文献

[1]Mapping of a wheat resistance gene to yellow mosaic disease by amplified fragment length polymorphism and simple sequence repeat markers. Nie, H,He, ZT,Chen, XL,Han, YP,Wang, JR,Li, X,Han, CG,Yu, JL. 2005

[2]A major QTL controlling seed dormancy and pre-harvest sprouting resistance on chromosome 4A in a Chinese wheat landrace. Bai, Gui-Hua,Chen, Cui-Xia,Cai, Shi-Bin,Cai, Shi-Bin. 2008

[3]Detection of Fusarium head blight resistance QTL in a wheat population using bulked segregant analysis. Shen, X,Zhou, M,Lu, W,Ohm, H. 2003

[4]Different Tolerance in Bread Wheat, Durum Wheat and Barley to Fusarium Crown Rot Disease Caused by Fusarium pseudograminearum. Liu, Yaxi,Wei, Yuming,Zheng, Youliang,Liu, Yaxi,Ma, Jun,Yan, Wei,Liu, Chunji,Ma, Jun,Yan, Guijun,Yan, Wei,Zhou, Meixue,Zhou, Meixue. 2012

[5]Change of Defensive-related Enzyme in Wheat Crown Rot Seedlings Infected by Fusarium graminearum. Zhang, P.,Zhou, M. P.,Zhang, X.,Huo, Y.,Ma, H. X.. 2013

[6]Genotypically Identifying Wheat Mesophyll Conductance Regulation under Progressive Drought Stress. Olsovska, Katarina,Brestic, Marian,Shao, Hong Bo,Olsovska, Katarina,Kovar, Marek,Brestic, Marian,Zivcak, Marek,Slamka, Pavol,Shao, Hong Bo. 2016

[7]Heme Oxygenase-1 is Associated with Wheat Salinity Acclimation by Modulating Reactive Oxygen Species Homeostasis. Xie, Yanjie,Cui, Weiti,Shen, Wenbiao,Yang, Qing,Xie, Yanjie,Cui, Weiti,Shen, Wenbiao,Yang, Qing,Yuan, Xingxing. 2011

[8]Quantitative trait loci for resistance to Sharp Eyespot (Rhizoctonia cerealis) in recombinant inbred wheat lines from the cross Niavt 14 x Xuzhou 25. Jiang, Yanjie,Zhu, Fangfang,Cai, Shibin,Wu, Jizhong,Zhang, Qiaofeng. 2016

[9]Overexpression of wheat lipid transfer protein gene TaLTP5 increases resistances to Cochliobolus sativus and Fusarium graminearum in transgenic wheat. Li, Zhao,Xu, Huijun,Du, Lipu,Zhang, Zengyan,Zhou, Miaoping.

[10]The wheat AGC kinase TaAGC1 is a positive contributor to host resistance to the necrotrophic pathogen Rhizoctonia cerealis. Zhu, Xiuliang,Yang, Kun,Wei, Xuening,Rong, Wei,Du, Lipu,Ye, Xingguo,Qi, Lin,Zhang, Zengyan,Zhang, Qiaofeng.

[11]Effect of wheat pearling on flour phytase activity, phytic acid, iron, and zinc content. Liu, Zhenghui,Wang, Haiyan,Wang, Xu-E,Xu, Hongyan,Chen, Peidu,Liu, Dajun,Gao, Derong,Zhang, Guoping. 2008

[12]Characterization of a Wheat Heme Oxygenase-1 Gene and Its Responses to Different Abiotic Stresses. Xu, Dao-kun,Jin, Qi-jiang,Xie, Yan-jie,Liu, Ya-hui,Lin, Yu-ting,Shen, Wen-biao,Zhou, Yi-jun. 2011

[13]INHERITANCE AND CHROMOSOMAL LOCATIONS OF MALE-FERTILITY RESTORING GENE TRANSFERRED FROM AEGILOPS-UMBELLULATA ZHUK TO TRITICUM-AESTIVUM L. MA, ZQ,ZHAO, YH,SORRELLS, ME. 1995

[14]Identification of novel quantitative trait loci for resistance to Fusarium seedling blight caused by Microdochium majus and M. nivale in wheat. Ren, Runsheng,Yang, Xingping,Ren, Runsheng,Foulkes, John,Mayes, Sean,Ray, Rumiana V..

[15]A novel, in vivo, indoor method to preserve rice black-streaked dwarf virus in small brown planthopper using wheat seedling as a bridge host. Ren, Chunmei,Cheng, Zhaobang,Yang, Liu,Miao, Qian,Fan, Yongjian,Zhou, Yijun.

[16]Natural occurrence of deoxynivalenol and zearalenone in wheat from Jiangsu province, China. Ji, Fang,Xu, Jianhong,Liu, Xin,Yin, Xianchao,Shi, Jianrong.

[17]MOLECULAR BREEDING FOR WHEAT FUSARIUM HEAD BLIGHT RESISTANCE IN CHINA. M, Hongxiang,Yao, Jinbao,Zhou, Miaoping,Zhang, Xu,Ren, Lijuan,Yu, Giuhong,Lu, Weizhong.

[18]Photosynthetic and biochemical activities in flag leaves of a newly developed superhigh-yield hybrid rice (Oryza sativa) and its parents during the reproductive stage. Zhang, C. -J.,Chu, H. -J.,Chen, G. -X.,Shi, D. -W.,Zuo, M.,Wang, J.,Lu, C. -G.,Wang, P.,Chen, L..

[19]Resistance against Fusarium Head Blight in Transgenic Wheat Plants Expressing the ScNPR1 gene. Yu, Guihong,Zhang, Xu,Yao, Jingbao,Zhou, MiaoPing,Ma, Hongxiang.

[20]PROGRESS ON INHERITANCE AND BREEDING FOR WHEAT SCAB RESISTANCE IN JAAS. Yao, Jinbao,Ma, Hongxiang,Lu, Weizhong.

作者其他论文 更多>>