您好,欢迎访问黑龙江省农业科学院 机构知识库!

Transformation and Sequestration of Total Organic Carbon in Black Soil under Different Fertilization Regimes with Straw Carbon Inputs

文献类型: 外文期刊

作者: Zhang, Jiuming 1 ; Yuan, Jiahui 1 ; Zhu, Yingxue 1 ; Kuang, Enjun 1 ; Han, Jiaye 2 ; Shi, Yanxiang 2 ; Chi, Fengqin 1 ; Wei, Dan 3 ; Liu, Jie 1 ;

作者机构: 1.Heilongjiang Acad Agr Sci, Heilongjiang Acad Black Soil Conservat & Utilizat, Key Lab Black Soil Protect & Utilizat, Minist Agr & Rural Affairs, Harbin 150086, Peoples R China

2.Northeast Agr Univ, Coll Resources & Environm Sci, Harbin 150030, Peoples R China

3.Beijing Acad Agr & Forestry Sci, Inst Plant Nutr & Resource, Beijing 100097, Peoples R China

关键词: black soil; long-term fertilization; straw returning; SOC; carbon storage

期刊名称:AGRICULTURE-BASEL ( 影响因子:3.3; 五年影响因子:3.5 )

ISSN:

年卷期: 2024 年 14 卷 6 期

页码:

收录情况: SCI

摘要: In the context of the carbon peak and carbon-neutral era, it is crucial to effectively utilize maize straw as a resource for achieving carbon (C) sequestration and emission reduction in rural agriculture. Maize straw carbon undergoes two processes after being added to the soil: mineralization (decomposition) and humification (synthesis) by soil animals and microorganisms. These processes contribute to the reintegration of carbon into the agroecosystem's carbon cycle. However, understanding of the transformation and stabilization of straw carbon, as well as the differences in C fixation capacity in soils with various fertilization treatments in black soils, remains limited. This study aims to quantify the relationship between straw carbon input and organic carbon sequestration in various fertilization treatments of black soil. Based on a long-term positional fertilization trial (45 years) in black soil, C-13-labeled maize straw (1.5 g in 120 g of dry soil) was applied and combined with an in situ incubation method using carborundum tubes. Throughout the 360-day trial, we observed the influence of fertilization on soil total organic C levels, organic carbon delta C-13 values, maize straw addition rate, and straw C fixation capacity. The decomposition of straw was most prominent during the initial 60 days of the incubation period, followed by a gradual decrease in the rate of decomposition. Compared with day 0, the SOC delta C-13 value and straw C residue rate were highest in the no-fertilization treatment (CK) after 360 days of incubation. The amount of organic carbon transformed and fixed in the soil was significantly higher in the organic fertilizer treatment (M) compared to other treatments, highlighting the stronger decomposition, transformation, and carbon fixation capacity of straw carbon in the M treatment. Moreover, the highest carbon storage of 43.23 Mgha(-1) was observed in the M fertilization treatment after 360 days, which was significantly different from other treatments (p < 0.05). The study demonstrates that soil with low fertility exhibits increased sequestration potential for straw carbon. Additionally, organic fertilizer input would increase soil organic carbon storage and facilitate straw carbon conversion.

  • 相关文献
作者其他论文 更多>>