The bZIP Transcription Factor LtAP1 Modulates Oxidative Stress Tolerance and Virulence in the Peach Gummosis Fungus Lasiodiplodia theobromae
文献类型: 外文期刊
作者: Zhang, He 1 ; Shen, Wanqi 1 ; Zhang, Dongmei 1 ; Shen, Xingyi 1 ; Wang, Fan 3 ; Hsiang, Tom 4 ; Liu, Junwei 1 ; Li, Guohu 1 ;
作者机构: 1.Huazhong Agr Univ, Coll Hort & Forestry Sci, Minist Educ, Key Lab Hort Plant Biol, Wuhan, Peoples R China
2.Chinese Acad Trop Agr Sci, Haikou Expt Stn, Haikou, Hainan, Peoples R China
3.Jiujiang Univ, Jiangxi Oil Tea Camellia, Jiujiang, Peoples R China
4.Univ Guelph, Sch Environm Sci, Guelph, ON, Canada
关键词: AP1 transcription factor; fungal virulence; Lasiodiplodia theobromae; oxidative stress response; peach gummosis disease; plant defense response
期刊名称:FRONTIERS IN MICROBIOLOGY ( 影响因子:5.64; 五年影响因子:6.32 )
ISSN:
年卷期: 2021 年 12 卷
页码:
收录情况: SCI
摘要: Lasiodiplodia theobromae is one of the primary causal agents in peach gummosis disease, leading to enormous losses in peach production. In our previous study, a redox-related gene, LtAP1, from the fungus was significantly upregulated in peach shoots throughout infection. Here, we characterized LtAP1, a basic leucine zipper transcription factor, during peach gummosis progression using the CRISPR-Cas9 system and homologous recombination. The results showed that LtAP1-deletion mutant had slower vegetative growth and increased sensitivity to several oxidative and nitrosative stress agents. LtAP1 was highly induced by exogenous oxidants treatment in the L. theobromae wild-type strain. In a pathogenicity test, the deletion mutant showed decreased virulence (reduced size of necrotic lesions, less gum release, and decreased pathogen biomass) on infected peach shoots compared to the wild-type strain. The mutant showed severely reduced transcription levels of genes related to glutaredoxin and thioredoxin in L. theobroame under oxidative stress or during infection, indicating an attenuated capacity for reactive oxygen species (ROS) detoxification. When shoots were treated with an NADPH oxidase inhibitor, the pathogenicity of the mutant was partially restored. Moreover, ROS production and plant defense response were strongly activated in peach shoots infected by the mutant. These results highlight the crucial role of LtAP1 in the oxidative stress response, and further that it acts as an important virulence factor through modulating the fungal ROS-detoxification system and the plant defense response.
- 相关文献
作者其他论文 更多>>
-
Caffeic Acid O-Methyltransferase Gene Family in Mango (Mangifera indica L.) with Transcriptional Analysis under Biotic and Abiotic Stresses and the Role of MiCOMT1 in Salt Tolerance
作者:Wang, Huiliang;Chen, Zhuoli;Zhang, Mengting;Zhang, He;Wang, Huiliang;Chen, Zhuoli;Lei, Chen;Zhang, Mengting;Pu, Jinji;Zhang, He;Chen, Zhuoli;Luo, Ruixiong;Gao, Aiping
关键词:COMT gene family; salt tolerance; transcriptional analysis; transient overexpression
-
Identification of the ERF gene family of Mangifera indica and the defense response of MiERF4 to Xanthomonas campestris pv. mangiferaeindicae
作者:Lei, Chen;Zhang, He;Lei, Chen;Zhang, Mengting;Wang, Huiliang;Zhang, He;Dang, Zhiguo;Zhu, Min;Chen, Yeyuan;Zhu, Min;Chen, Yeyuan
关键词:Mangifera indica; ERF gene family; Expression profile; JA/ETH signaling pathway; Callose; Defense
-
MiMYB10 transcription factor regulates biosynthesis and accumulation of carotenoid involved genes in mango fruit
作者:Dang, Zhiguo;Zhu, Min;Chen, Huarui;Gao, Aiping;Ma, Weihong;Chen, Yeyuan;Dang, Zhiguo;Zhang, He;Zhu, Min;Chen, Yeyuan;Zhang, Ye;Wei, Yunxie
关键词:Mango; MYB10; Transcriptional regulation; Phytoene desaturase gene; Carotenoid; Peel color
-
Telomere-to-telomere genome of the allotetraploid legume Sesbania cannabina reveals transposon-driven subgenome divergence and mechanisms of alkaline stress tolerance
作者:Luo, Haofei;Wang, Xiaofei;You, Changqing;Wu, Xuedan;Li, Tong;He, Kaixuan;Ye, Qingtong;Zhao, Qinghua;Deng, Xian;Cao, Xiaofeng;Song, Xianwei;Huang, Gai;Luo, Haofei;Wang, Xiaofei;You, Changqing;Wu, Xuedan;Li, Tong;He, Kaixuan;Ye, Qingtong;Zhao, Qinghua;Deng, Xian;Cao, Xiaofeng;Song, Xianwei;Huang, Gai;Wang, Xiaofei;Lv, Zhiyao;He, Kaixuan;Jia, Yajun;You, Changqing;Ye, Qingtong;Cao, Xiaofeng;Pan, Duofeng;Zhang, Dongmei;Shen, Zhongbao;Zhang, Xiaodong;Zhang, Xiaodong;Zhang, Xiaodong;Liu, Guodao
关键词:Sesbania cannabina; alkaline stress; telomere-to-telomere genome; legume; green manure; phosphate transporter; allotetraploid
-
A vector-free gene interference system using delaminated Mg-Al-lactate layered double hydroxide nanosheets as molecular carriers to intact plant cells
作者:Zhang, He;Li, Xinyu;Yu, Dong;Guan, Junqi;Ding, Hao;Wan, Yinglang;Zhang, He;Wu, Hongyang;Wang, Qiang
关键词:RNA delivery; dsRNA; RNAi; Bioconjugates; Target gene expression
-
A CRISPR/Cas9-Based Study of CgloRPCYG, a Gene That Regulates Pathogenicity, Conidial Yield, and Germination in Colletotrichum gloeosporioides
作者:Zhang, He;Xia, Yu-Qi;Xia, Yang;Zhang, Meng-Ting;Ye, Zi;Sun, Rui-Qing;Pu, Jin-Ji;Zhang, He;Xia, Yu-Qi;Liu, Xiao-Mei;Xia, Yang;Pu, Jin-Ji
关键词:filamentous fungus; Colletotrichum gloeosporioides; CRISPR; Cas9 knockout mutants; complementary strain; pathogenicity
-
The Involvement of the Laccase Gene Cglac13 in Mycelial Growth, Germ Tube Development, and the Pathogenicity of Colletotrichum gloeosporioides from Mangoes
作者:Zhang, Mengting;Xiao, Chunli;Tan, Qing;Dong, Lingling;Liu, Xiaomei;Zhang, He;Zhang, Mengting;Xiao, Chunli;Tan, Qing;Zhang, He;Pu, Jinji
关键词:mango; Colletotrichum gloeosporioides; laccase; germ tube development; pathogenicity