您好,欢迎访问中国热带农业科学院 机构知识库!

Identification and expression analysis of histone modification gene (HM) family during somatic embryogenesis of oil palm

文献类型: 外文期刊

作者: Zhou, Lixia 1 ; Yarra, Rajesh 1 ; Jin, Longfei 1 ; Yang, Yaodong 1 ; Cao, Hongxing 1 ; Zhao, Zhihao 1 ;

作者机构: 1.Chinese Acad Trop Agr Sci, Coconut Res Inst, Hainan Key Lab Trop Oil Crops Biol, Wenchang 571339, Hainan, Peoples R China

关键词: HMs; Somatic embryogenesis; Oil palm; Real-time PCR

期刊名称:BMC GENOMICS ( 影响因子:4.547; 五年影响因子:4.931 )

ISSN: 1471-2164

年卷期: 2022 年 23 卷 1 期

页码:

收录情况: SCI

摘要: Background Oil palm (Elaeis guineensis, Jacq.) is an important vegetable oil-yielding plant. Somatic embryogenesis is a promising method to produce large-scale elite clones to meet the demand for palm oil. The epigenetic mechanisms such as histone modifications have emerged as critical factors during somatic embryogenesis. These histone modifications are associated with the regulation of various genes controlling somatic embryogenesis. To date, none of the information is available on the histone modification gene (HM) family in oil palm. Results We reported the identification of 109 HM gene family members including 48 HMTs, 27 HDMs, 13 HATs, and 21 HDACs in the oil palm genome. Gene structural and motif analysis of EgHMs showed varied exon-intron organization and with conserved motifs among them. The identified 109 EgHMs were distributed unevenly across 16 chromosomes and displayed tandem duplication in oil palm genome. Furthermore, relative expression analysis showed the differential expressional pattern of 99 candidate EgHM genes at different stages (non-embryogenic, embryogenic, somatic embryo) of somatic embryogenesis process in oil palm, suggesting the EgHMs play vital roles in somatic embryogenesis. Our study laid a foundation to understand the regulatory roles of several EgHM genes during somatic embryogenesis. Conclusions A total of 109 histone modification gene family members were identified in the oil palm genome via genome-wide analysis. The present study provides insightful information regarding HM gene's structure, their distribution, duplication in oil palm genome, and also their evolutionary relationship with other HM gene family members in Arabidopsis and rice. Finally, our study provided an essential role of oil palm HM genes during somatic embryogenesis process.

  • 相关文献
作者其他论文 更多>>