文献类型: 外文期刊
作者: Jing Xia 1 ; Zhang Jie 1 ; Wang Jiao-jiao 2 ; Ming Shi-kang 2 ; Fu You-qiang 3 ; Feng Hai-kuan 2 ; Song Xiao-yu 2 ;
作者机构: 1.Xian Univ Sci & Technol, Sch Surveying & Mapping Sci & Technol, Xian 710054, Peoples R China
2.Beijing Acad Agr & Forestry Sci, Informat Technol Res Ctr, Beijing 100094, Peoples R China
3.Guangdong Acad Agr Sci, Rice Res Inst, Guangzhou 510640, Peoples R China
关键词: Hyperspectral remote sensing; Rice yield estimation; Bayesian ridge regression; Support vector regression
期刊名称:SPECTROSCOPY AND SPECTRAL ANALYSIS ( 影响因子:0.609; 五年影响因子:0.516 )
ISSN: 1000-0593
年卷期: 2022 年 42 卷 5 期
页码:
收录情况: SCI
摘要: Rice is China' s major grain food crop, grown mainly in the Yangtze River valley and southern China and on the Yunnan-Guizhou Plateau. The use of hyperspectral remote sensing technology to monitor rice yield before it matures is important. It can promptly adjust cultivation management methods and guide reasonable fertilization, and accurately grasp rice yield information to help the government make decisions in advance. In this study, the nitrogen fertilizer gradient experiment was carried on 2019-2020 at Zhongluotan experimental base in Baiyun District, Guangzhou City. The rice canopy hyperspectral data, crop population growth parameters (plant above-ground biomass (AGB) and leaf area index (LAI)) and crop nitrogen nutrient intakes at the rice differentiation and heading stage were obtained. Three machine learning algorithms, Bayesian Ridge Regression (BRR), Support Vector Regression (SVR), and Partial Least Square Regression (PLSR), were used to establish yield estimate models based on the different data sources, including rice canopy spectrum data, spectrum data combined with crop growth parameters, and spectral data, crop growth parameters, and crop nutrient intake data. The estimation accuracy of BRR, SVR and PLSR models, were evaluated and compared, then the best estimation model and optimal estimation growth period for rice yield were determined. The results showed that among the three methods, the BRR and SVR methods were more suitable for yield monitoring, with better performance in different periods and different parameter combinations (R-2 >0. 82, NRMSE<8. 22%). Based on the 2019 and 2020 data, the best monitoring model for yield monitoring using full-band spectral information was the BRR model at the differentiation stage with R-2 of 0. 90 and the SVR model at the tasseling stage with R-2 of 0. 87. When full-band spectral information was used for yield monitoring, the best monitoring model for both periods was the BRR model with R-2 of 0. 90 and 0. 92, respectively, compared with the BRR and SVR models, the highest R-2 of the PLSR model was only 0. 75 for different periods and different combinations of parameters; based on the 2020 data, when three different parameter combinations were used as inputs, the BRR model was the best in both periods, and the modeling accuracy was higher in the differentiation period than in the tasseling period (R-2 increased by at least 0. 02 and NRMSE decreased by at least 0. 61%), and when the input parameter combinations were full-band spectra with crop population growth parameters and crop nutrient uptake, the accuracy of the BRR model for yield estimation reached Through the experimental study, it was concluded that the optimal monitoring period for yield is the differentiation period. The optimal monitoring model is the BRR model. The study results can provide a reference for early remote sensing monitoring of rice yield.
- 相关文献
作者其他论文 更多>>
-
Estimation of Potato Plant Nitrogen Content Based on UAV Hyperspectral Imaging
作者:Fan Yi-guang;Feng Hai-kuan;Liu Yang;Long Hui-ling;Yang Gui-jun;Feng Hai-kuan;Fan Yi-guang;Feng Hai-kuan;Liu Yang;Long Hui-ling;Yang Gui-jun;Liu Yang;Fan Yi-guang;Qian Jian-guo
关键词:UAV; Potato; Hyperspectral; Image features; Plant nitrogen content
-
Estimation of Potato Above-Ground Biomass Based on VGC-AGB Model and Hyperspectral Remote Sensing
作者:Feng Hai-kuan;Zhao Chun-jiang;Feng Hai-kuan;Fan Yi-guang;Yang Gui-jun;Zhao Chun-jiang;Yue Ji-bo
关键词:VGC-AGB model; Hyperspectral remote sensing; Potato; Aboveground biomass (AGB)
-
Monitoring of Nitrogen Content in Winter Wheat Based on UAV Hyperspectral Imagery
作者:Feng Hai-kuan;Fan Yi-guang;Tao Hui-lin;Yang Gui-jun;Zhao Chun-jiang;Feng Hai-kuan;Zhao Chun-jiang;Yang Fu-qin
关键词:Unmanned aerial vehicle; Winter wheat; Hyperspectral; Nitrogen content; Stepwise regression; Spectral feature parameters
-
Estimation of Nitrogen Content in Potato Plants Based on Spectral Spatial Characteristics
作者:Fan Yi-guang;Feng Hai-kuan;Liu Yang;Bian Ming-bo;Zhao Yu;Yang Gui-jun;Feng Hai-kuan;Fan Yi-guang;Feng Hai-kuan;Liu Yang;Bian Ming-bo;Zhao Yu;Yang Gui-jun;Liu Yang;Fan Yi-guang;Qian Jian-guo
关键词:Unmanned aerial vehicle; Potato; Plantnitrogen content; Vegetation indices; High frequency information
-
Leaf Area Index Estimation Based on UAV Hyperspectral Band Selection
作者:Kong Yu-ru;Wang Li-juan;Xu Yi;Liang Liang;Xu Lu;Zhang Qing-qi;Kong Yu-ru;Feng Hai-kuan;Yang Xiao-dong
关键词:Unmanned aerial vehicle (UAV); Hyperspectral image; Band selection; Winter wheat; Leaf area index
-
Monitoring Nitrogen Nutrition and Grain Protein Content of Rice Based on Ensemble Learning
作者:Zhang Jie;Xu Bo;Feng Hai-kuan;Wang Jiao-jiao;Ming Shi-kang;Song Xiao-yu;Zhang Jie;Jing Xia;Fu You-qiang
关键词:Hyperspectral remote sensing; Rice grain protein; Machine Learning; Ensemble algorithms; Adaboost; Random forest
-
Estimation of Chlorophyll Content in Winter Wheat Based on UAV Hyperspectral
作者:Feng Hai-kuan;Tao Hui-lin;Zhao Yu;Fan Yi-guang;Yang Gui-jun;Feng Hai-kuan;Yang Fu-qin
关键词:Winter wheat; Chlorophyll content; Vegetation index; Red edge parameter; Partial least squares regression