Research on the evolutionary history of the morphological structure of cotton seeds: a new perspective based on high-resolution micro-CT technology
文献类型: 外文期刊
作者: Li, Yuankun 1 ; Huang, Guanmin 2 ; Lu, Xianju 2 ; Gu, Shenghao 2 ; Zhang, Ying 2 ; Li, Dazhuang 2 ; Guo, Minkun 2 ; Zhang, Yongjiang 1 ; Guo, Xinyu 2 ;
作者机构: 1.Hebei Agr Univ, Coll Agron, State Key Lab North China Crop Improvement & Regul, Key Lab Crop Growth Regulat Hebei Prov, Baoding, Peoples R China
2.Beijing Acad Agr & Forestry Sci, Informat Technol Res Ctr, Beijing Key Lab Digital Plant, Beijing, Peoples R China
关键词: cotton; seed morphological structure; micro-CT; phenotypic analysis; temporal succession
期刊名称:FRONTIERS IN PLANT SCIENCE ( 影响因子:5.6; 五年影响因子:6.8 )
ISSN: 1664-462X
年卷期: 2023 年 14 卷
页码:
收录情况: SCI
摘要: Cotton (Gossypium hirsutum L.) seed morphological structure has a significant impact on the germination, growth and quality formation. However, the wide variation of cotton seed morphology makes it difficult to achieve quantitative analysis using traditional phenotype acquisition methods. In recent years, the application of micro-CT technology has made it possible to analyze the three-dimensional morphological structure of seeds, and has shown technical advantages in accurate identification of seed phenotypes. In this study, we reconstructed the seed morphological structure based on micro-CT technology, deep neural network Unet-3D model, and threshold segmentation methods, extracted 11 basics phenotypes traits, and constructed three new phenotype traits of seed coat specific surface area, seed coat thickness ratio and seed density ratio, using 102 cotton germplasm resources with clear year characteristics. Our results show that there is a significant positive correlation (P< 0.001) between the cotton seed size and that of the seed kernel and seed coat volume, with correlation coefficients ranging from 0.51 to 0.92, while the cavity volume has a lower correlation with other phenotype indicators (r<0.37, P< 0.001). Comparison of changes in Chinese self-bred varieties showed that seed volume, seed surface area, seed coat volume, cavity volume and seed coat thickness increased by 11.39%, 10.10%, 18.67%, 115.76% and 7.95%, respectively, while seed kernel volume, seed kernel surface area and seed fullness decreased by 7.01%, 0.72% and 16.25%. Combining with the results of cluster analysis, during the hundred-year cultivation history of cotton in China, it showed that the specific surface area of seed structure decreased by 1.27%, the relative thickness of seed coat increased by 8.70%, and the compactness of seed structure increased by 50.17%. Furthermore, the new indicators developed based on micro-CT technology can fully consider the three-dimensional morphological structure and cross-sectional characteristics among the indicators and reflect technical advantages. In this study, we constructed a microscopic phenotype research system for cotton seeds, revealing the morphological changes of cotton seeds with the year in China and providing a theoretical basis for the quantitative analysis and evaluation of seed morphology.
- 相关文献
作者其他论文 更多>>
-
Three-Dimensional Modeling of Maize Canopies Based on Computational Intelligence
作者:Wu, Yandong;Xiao, Pengliang;Huang, Linsheng;Wu, Yandong;Wen, Weiliang;Gu, Shenghao;Huang, Guanmin;Wang, Chuanyu;Lu, Xianju;Xiao, Pengliang;Guo, Xinyu;Wen, Weiliang;Gu, Shenghao;Huang, Guanmin;Wang, Chuanyu;Lu, Xianju;Guo, Xinyu;Huang, Guanmin;Lu, Xianju
关键词:
-
In-capillary aptamer-functionalized dispersive solid-phase microextraction for dynamic transfer enrichment and miniature mass spectrometry analysis: A magnetically driven capture-and-release strategy
作者:Li, Linsen;Zhang, Ying;Lv, Yueguang;Ma, Qiang;Li, Linsen;Qu, Feng;Zhao, Liping
关键词:Aptamer; Dispersive magnetic solid-phase micro; extraction; Extraction nanoelectrospray ionization; Dicationic ionic liquid; Charge inversion; Miniature mass spectrometer
-
Transcriptome Analysis and Metabolic Profiling Reveal the Key Regulatory Pathways in Drought Stress Responses and Recovery in Tomatoes
作者:Shu, Jinshuai;Wang, Xiaoxuan;Liu, Fuzhong;Zhang, Ying;Chen, Yuhui;Zhang, Lili;Liu, Guiming
关键词:transcriptomics; metabolomics; drought stress; rehydration; genes; pathway
-
Plant microphenotype: from innovative imaging to computational analysis
作者:Zhang, Ying;Gu, Shenghao;Du, Jianjun;Huang, Guanmin;Lu, Xianju;Wang, Jinglu;Guo, Xinyu;Zhao, Chunjiang;Shi, Jiawei;Yang, Wanneng
关键词:computational phenotyping; genetic effects; imaging technique; microphenotype; trait identification
-
The alleviative effect of C-phycocyanin peptides against TNBS-induced
作者:Wen, Weiliang;Wu, Sheng;Gu, Shenghao;Guo, Xinyu;Wen, Weiliang;Lu, Xianju;Wu, Sheng;Lu, Xianju;Liu, Xiang;Gu, Shenghao;Guo, Xinyu;Wu, Sheng;Liu, Xiang;Gu, Shenghao;Guo, Xinyu
关键词:Three-dimensional point cloud; Semantic reconstruction; Maize leaf; Plant phenotyping
-
3D Reconstruction of Wheat Plants by Integrating Point Cloud Data and Virtual Design Optimization
作者:Gu, Wenxuan;Guo, Xinyu;Wen, Weiliang;Wu, Sheng;Lu, Xianju;Guo, Xinyu;Wen, Weiliang;Wu, Sheng;Zheng, Chenxi;Lu, Xianju;Chang, Wushuai;Xiao, Pengliang;Guo, Xinyu
关键词:wheat; plant architecture; three-dimensional reconstruction; virtual design; plant phenotyping
-
Automatic acquisition, analysis and wilting measurement of cotton 3D phenotype based on point cloud
作者:Hao, Haoyuan;Zhuang, Lvhan;Xu, Longqin;Li, Hongxin;Liu, Shuangyin;Hao, Haoyuan;Wu, Sheng;Li, Yuankun;Wen, Weiliang;Zhuang, Lvhan;Guo, Xinyu;Hao, Haoyuan;Wu, Sheng;Li, Yuankun;Wen, Weiliang;Zhuang, Lvhan;Guo, Xinyu;Hao, Haoyuan;Zhuang, Lvhan;Xu, Longqin;Li, Hongxin;Liu, Shuangyin;Li, Yuankun;Zhang, Yongjiang
关键词:Phenotypic analysis; Deep learning; Leaf wilting; Multi-view



