3D Reconstruction of Wheat Plants by Integrating Point Cloud Data and Virtual Design Optimization
文献类型: 外文期刊
作者: Gu, Wenxuan 1 ; Wen, Weiliang 2 ; Wu, Sheng 2 ; Zheng, Chenxi 3 ; Lu, Xianju 2 ; Chang, Wushuai 3 ; Xiao, Pengliang 3 ; Guo, Xinyu 1 ;
作者机构: 1.Jiangsu Univ, Sch Agr Equipment Engn, Zhenjiang 212013, Peoples R China
2.Beijing Acad Agr & Forestry Sci, Informat Technol Res Ctr, Beijing 100097, Peoples R China
3.Natl Engn Res Ctr Informat Technol Agr, Beijing Key Lab Digital Plant, Beijing 100097, Peoples R China
关键词: wheat; plant architecture; three-dimensional reconstruction; virtual design; plant phenotyping
期刊名称:AGRICULTURE-BASEL ( 影响因子:3.6; 五年影响因子:3.6 )
ISSN:
年卷期: 2024 年 14 卷 3 期
页码:
收录情况: SCI
摘要: The morphology and structure of wheat plants are intricate, containing numerous tillers, rich details, and significant cross-obscuration. Methods of effectively reconstructing three-dimensional (3D) models of wheat plants that reflects the varietal architectural differences using measured data is challenging in plant phenomics and functional-structural plant models. This paper proposes a 3D reconstruction technique for wheat plants that integrates point cloud data and virtual design optimization. The approach extracted single stem number, growth position, length, and inclination angle from the point cloud data of a wheat plant. It then built an initial 3D mesh model of the plant by integrating a wheat 3D phytomer template database with variety resolution. Diverse 3D wheat plant models were subsequently virtually designed by iteratively modifying the leaf azimuth, based on the initial model. Using the 3D point cloud of the plant as the overall constraint and setting the minimum Chamfer distance between the point cloud and the mesh model as the optimization objective, we obtained the optimal 3D model as the reconstruction result of the plant through continuous iterative calculation. The method was validated using 27 winter wheat plants, with nine varieties and three replicates each. The R2 values between the measured data and the reconstructed plants were 0.80, 0.73, 0.90, and 0.69 for plant height, crown width, plant leaf area, and coverage, respectively. Additionally, the Normalized Root Mean Squared Errors (NRMSEs) were 0.10, 0.12, 0.08, and 0.17, respectively. The Mean Absolute Percentage Errors (MAPEs) used to investigate the vertical spatial distribution between the reconstructed 3D models and the point clouds of the plants ranged from 4.95% to 17.90%. These results demonstrate that the reconstructed 3D model exhibits satisfactory consistency with the measured data, including plant phenotype and vertical spatial distribution, and accurately reflects the characteristics of plant architecture and spatial distribution for the utilized wheat cultivars. This method provides technical support for research on wheat plant phenotyping and functional-structural analysis.
- 相关文献
作者其他论文 更多>>
-
Automatic acquisition, analysis and wilting measurement of cotton 3D phenotype based on point cloud
作者:Hao, Haoyuan;Zhuang, Lvhan;Xu, Longqin;Li, Hongxin;Liu, Shuangyin;Hao, Haoyuan;Wu, Sheng;Li, Yuankun;Wen, Weiliang;Zhuang, Lvhan;Guo, Xinyu;Hao, Haoyuan;Wu, Sheng;Li, Yuankun;Wen, Weiliang;Zhuang, Lvhan;Guo, Xinyu;Hao, Haoyuan;Zhuang, Lvhan;Xu, Longqin;Li, Hongxin;Liu, Shuangyin;Li, Yuankun;Zhang, Yongjiang
关键词:Phenotypic analysis; Deep learning; Leaf wilting; Multi-view
-
Maize emergence rate and leaf emergence speed estimation via image detection under field rail-based phenotyping platform
作者:Zhuang, Lvhan;Hao, Haoyuan;Li, Jinhui;Xu, Longqin;Liu, Shuangyin;Zhuang, Lvhan;Wang, Chuanyu;Hao, Haoyuan;Guo, Xinyu;Zhuang, Lvhan;Wang, Chuanyu;Hao, Haoyuan;Guo, Xinyu;Zhuang, Lvhan;Hao, Haoyuan;Li, Jinhui;Xu, Longqin;Liu, Shuangyin;Zhuang, Lvhan;Hao, Haoyuan;Li, Jinhui;Xu, Longqin;Liu, Shuangyin
关键词:Field rail-based phenotyping platform; Emergence rate; Leaf emergence speed; Faster R-CNN; Mask R-CNN
-
Using high-throughput phenotype platform MVS-Pheno to reconstruct the 3D morphological structure of wheat
作者:Li, Wenrui;Zhao, Chunjiang;Li, Wenrui;Wu, Sheng;Wen, Weiliang;Lu, Xianju;Liu, Haishen;Zhang, Minggang;Xiao, Pengliang;Guo, Xinyu;Zhao, Chunjiang;Li, Wenrui;Wu, Sheng;Wen, Weiliang;Lu, Xianju;Liu, Haishen;Zhang, Minggang;Xiao, Pengliang;Guo, Xinyu
关键词:3D reconstruction; plant morphology; point cloud segmentation; Wheat
-
Using high-throughput phenotyping platform MVS-Pheno to decipher the genetic architecture of plant spatial geometric 3D phenotypes for maize
作者:Wu, Sheng;Zhang, Ying;Wen, Weiliang;Wang, Chuanyu;Lu, Xianju;Guo, Minkun;Guo, Xinyu;Zhao, Jiuran;Zhao, Chunjiang;Wu, Sheng;Zhang, Ying;Wen, Weiliang;Wang, Chuanyu;Lu, Xianju;Guo, Minkun;Guo, Xinyu;Zhao, Chunjiang;Zhao, Yanxin;Zhao, Jiuran
关键词:Maize; Plant architecture; 3D phenotypes; Genome-wide association study
-
Method for the real-time detection of tomato ripeness using a phenotype robot and RP-YolactEdge
作者:Wang, Yuanqiao;Zhao, Chunjiang;Wang, Yuanqiao;Gou, Wenbo;Wang, Chuanyu;Fan, Jiangchuan;Wen, Weiliang;Lu, Xianju;Zhao, Chunjiang;Wang, Yuanqiao;Gou, Wenbo;Wang, Chuanyu;Wen, Weiliang;Lu, Xianju;Guo, Xinyu;Fan, Jiangchuan
关键词:instance segmentation; phenotype robot; tomato; greenhouse-based plant phenotyping; ripeness detection
-
Three-Dimensional Modeling of Maize Canopies Based on Computational Intelligence
作者:Wu, Yandong;Xiao, Pengliang;Huang, Linsheng;Wu, Yandong;Wen, Weiliang;Gu, Shenghao;Huang, Guanmin;Wang, Chuanyu;Lu, Xianju;Xiao, Pengliang;Guo, Xinyu;Wen, Weiliang;Gu, Shenghao;Huang, Guanmin;Wang, Chuanyu;Lu, Xianju;Guo, Xinyu;Huang, Guanmin;Lu, Xianju
关键词:
-
Plant microphenotype: from innovative imaging to computational analysis
作者:Zhang, Ying;Gu, Shenghao;Du, Jianjun;Huang, Guanmin;Lu, Xianju;Wang, Jinglu;Guo, Xinyu;Zhao, Chunjiang;Shi, Jiawei;Yang, Wanneng
关键词:computational phenotyping; genetic effects; imaging technique; microphenotype; trait identification