Maize emergence rate and leaf emergence speed estimation via image detection under field rail-based phenotyping platform
文献类型: 外文期刊
作者: Zhuang, Lvhan 1 ; Wang, Chuanyu 2 ; Hao, Haoyuan 1 ; Li, Jinhui 1 ; Xu, Longqin 1 ; Liu, Shuangyin 1 ; Guo, Xinyu 2 ;
作者机构: 1.Zhongkai Univ Agr & Engn, Guangzhou 510225, Peoples R China
2.Beijing Acad Agr & Forestry Sci, Informat Technol Res Ctr, Beijing 100097, Peoples R China
3.Natl Engn Res Ctr Informat Technol Agr, Beijing Key Lab Digital Plant, Beijing 100097, Peoples R China
4.Zhongkai Univ Agr & Engn, Guangzhou Key Lab Agr Prod Qual, Safety Traceabil Informat Technol, Guangzhou 510225, Peoples R China
5.Zhongkai Univ Agr & Engn, Coll Informat Sci & Technol, Guangzhou 510225, Peoples R China
关键词: Field rail-based phenotyping platform; Emergence rate; Leaf emergence speed; Faster R-CNN; Mask R-CNN
期刊名称:COMPUTERS AND ELECTRONICS IN AGRICULTURE ( 影响因子:8.3; 五年影响因子:8.3 )
ISSN: 0168-1699
年卷期: 2024 年 220 卷
页码:
收录情况: SCI
摘要: Accurate and efficient acquisition of maize emergence rate and leaf emergence speed in the field is essential for detecting seed quality, evaluating crop field management plans, and yield assessment. This study constructs a system solution to obtain the maize seedling emergence rate and leaf emergence speed based on the field railbased phenotyping platform and convolutional neural network. Firstly, we use the field rail-based phenotyping platform to collect a high-temporal sequence visible light images of maize plant during the seedling stage. In the first stage, an improved Faster R-CNN is used to detect maize seedlings in the plot images, and the plant ROI area is cropped as the input for the second stage network. In the second stage, the best performing ResNeSt network out of four backbone networks is chosen, using the Mask R-CNN model to segment the leaves of the input plant image, which is then used to calculate the number of leaves. We propose a quantification index for leaf emergence speed based on a weighted average combination of leaf numbers. Using the method described in this paper, we analyzed the plant images from 52 inbred lines plots of over seven consecutive days. The experimental results show that when the Intersection Over Union (IOU) is 0.50, the bbox_mAP of the maize seedling detection model is 0.969, with an accuracy rate of 99.53%. Compared with manual counting, the calculated R2 is 0.997 and RMSE is 43.382. The segm_mAP of the plant leaf segmentation model is 0.942. The differences in emergence rate and leaf emergence speed across 52 inbred lines were compared, providing new phenotyping reference indices for further exploring the genotypic differences affecting seed emergence and leafing.
- 相关文献
作者其他论文 更多>>
-
3D Reconstruction of Wheat Plants by Integrating Point Cloud Data and Virtual Design Optimization
作者:Gu, Wenxuan;Guo, Xinyu;Wen, Weiliang;Wu, Sheng;Lu, Xianju;Guo, Xinyu;Wen, Weiliang;Wu, Sheng;Zheng, Chenxi;Lu, Xianju;Chang, Wushuai;Xiao, Pengliang;Guo, Xinyu
关键词:wheat; plant architecture; three-dimensional reconstruction; virtual design; plant phenotyping
-
Automatic acquisition, analysis and wilting measurement of cotton 3D phenotype based on point cloud
作者:Hao, Haoyuan;Zhuang, Lvhan;Xu, Longqin;Li, Hongxin;Liu, Shuangyin;Hao, Haoyuan;Wu, Sheng;Li, Yuankun;Wen, Weiliang;Zhuang, Lvhan;Guo, Xinyu;Hao, Haoyuan;Wu, Sheng;Li, Yuankun;Wen, Weiliang;Zhuang, Lvhan;Guo, Xinyu;Hao, Haoyuan;Zhuang, Lvhan;Xu, Longqin;Li, Hongxin;Liu, Shuangyin;Li, Yuankun;Zhang, Yongjiang
关键词:Phenotypic analysis; Deep learning; Leaf wilting; Multi-view
-
Using high-throughput phenotype platform MVS-Pheno to reconstruct the 3D morphological structure of wheat
作者:Li, Wenrui;Zhao, Chunjiang;Li, Wenrui;Wu, Sheng;Wen, Weiliang;Lu, Xianju;Liu, Haishen;Zhang, Minggang;Xiao, Pengliang;Guo, Xinyu;Zhao, Chunjiang;Li, Wenrui;Wu, Sheng;Wen, Weiliang;Lu, Xianju;Liu, Haishen;Zhang, Minggang;Xiao, Pengliang;Guo, Xinyu
关键词:3D reconstruction; plant morphology; point cloud segmentation; Wheat
-
Using high-throughput phenotyping platform MVS-Pheno to decipher the genetic architecture of plant spatial geometric 3D phenotypes for maize
作者:Wu, Sheng;Zhang, Ying;Wen, Weiliang;Wang, Chuanyu;Lu, Xianju;Guo, Minkun;Guo, Xinyu;Zhao, Jiuran;Zhao, Chunjiang;Wu, Sheng;Zhang, Ying;Wen, Weiliang;Wang, Chuanyu;Lu, Xianju;Guo, Minkun;Guo, Xinyu;Zhao, Chunjiang;Zhao, Yanxin;Zhao, Jiuran
关键词:Maize; Plant architecture; 3D phenotypes; Genome-wide association study
-
Method for the real-time detection of tomato ripeness using a phenotype robot and RP-YolactEdge
作者:Wang, Yuanqiao;Zhao, Chunjiang;Wang, Yuanqiao;Gou, Wenbo;Wang, Chuanyu;Fan, Jiangchuan;Wen, Weiliang;Lu, Xianju;Zhao, Chunjiang;Wang, Yuanqiao;Gou, Wenbo;Wang, Chuanyu;Wen, Weiliang;Lu, Xianju;Guo, Xinyu;Fan, Jiangchuan
关键词:instance segmentation; phenotype robot; tomato; greenhouse-based plant phenotyping; ripeness detection
-
Three-Dimensional Modeling of Maize Canopies Based on Computational Intelligence
作者:Wu, Yandong;Xiao, Pengliang;Huang, Linsheng;Wu, Yandong;Wen, Weiliang;Gu, Shenghao;Huang, Guanmin;Wang, Chuanyu;Lu, Xianju;Xiao, Pengliang;Guo, Xinyu;Wen, Weiliang;Gu, Shenghao;Huang, Guanmin;Wang, Chuanyu;Lu, Xianju;Guo, Xinyu;Huang, Guanmin;Lu, Xianju
关键词:
-
Plant microphenotype: from innovative imaging to computational analysis
作者:Zhang, Ying;Gu, Shenghao;Du, Jianjun;Huang, Guanmin;Lu, Xianju;Wang, Jinglu;Guo, Xinyu;Zhao, Chunjiang;Shi, Jiawei;Yang, Wanneng
关键词:computational phenotyping; genetic effects; imaging technique; microphenotype; trait identification