Metagenomics reveals divergent functional profiles of soil carbon and nitrogen cycling under long-term addition of chemical and organic fertilizers in the black soil region
文献类型: 外文期刊
作者: Hu, Xiaojing 1 ; Gu, Haidong 1 ; Liu, Junjie 1 ; Wei, Dan 2 ; Zhu, Ping 3 ; Cui, Xi' An 4 ; Zhou, Baoku 2 ; Chen, Xueli 2 ; Jin, Jian 1 ; Liu, Xiaobing 1 ; Wang, Guanghua 1 ;
作者机构: 1.Chinese Acad Sci, Northeast Inst Geog & Agroecol, Key Lab Mollisols Agroecol, Harbin 150081, Peoples R China
2.Heilongjiang Acad Agr Sci, Inst Soil & Fertilizer & Environm Resources, Harbin 150086, Peoples R China
3.Jilin Acad Agr Sci, Inst Agr Resource & Environm, Changchun 130033, Peoples R China
4.Heilongjiang Acad Agr Sci, Heihe Branch, Heihe 164300, Peoples R China
5.Beijing Acad Agr & Forestry Sci, Inst Plant Nutr & Resources, Beijing 100097, Peoples R China
关键词: Soil metagenomics; Functional genes; Carbon and nitrogen cycling; Long-term fertilization; Mollisols
期刊名称:GEODERMA ( 影响因子:7.422; 五年影响因子:7.444 )
ISSN: 0016-7061
年卷期: 2022 年 418 卷
页码:
收录情况: SCI
摘要: The long-term effects of different fertilization regimes on the microbial functional potential of soils involving nutrient cycling remain largely unknown. Here, metagenomic sequencing was applied to investigate the influences of long-term chemical and organic fertilization on soil microbial C and N cycling across southern, middle and northern sites of black soil region in Northeast China. The results showed that biogeographic distance induced the most influential on the microbial functional profiles of soil C and N cycling, and significant effects of manure fertilization were detected across three experimental sites. Organic fertilization enriched the relative abundances of Proteobacteria and Planctomycetes that carry C and N cycling genes, while inhibited the growth of oligotrophic groups such as Verrucomicrobia. Chemical fertilization increased the gene abundances involved in methane oxidation, but had little effect on soil C degradation and fixation. Contrarily, manure fertilization, particularly the combination of chemical and organic fertilizers (CFM), significantly decreased the abundance of cooC (reductive acetyl-CoA pathway) and coxS (CO oxidation) while enhanced the abundance of icd (rTCA cycle), which are involved in C fixation. Additionally, chemical fertilization enriched the gene abundance that involved in soil N degradation, nitrification and anammox, whereas manure fertilization was beneficial for the functional potentials of assimilatory and dissimilatory nitrate reductions across the black soils. However, CFM significantly promoted the soil denitrification potential, possibly due to excess N input, which might result in soil N loss via the emission of nitrogenous gas in this region. Furthermore, the substantial enhancement in soil P contents induced by manure addition predominantly affected the C and N cycling profiles, abundance of functional genes and microbial taxa. Moreover, diverse correlations between C and N cycling genes suggested the synergetic or antagonistic interactions of C and N metabolic potentials in the black soils. Overall, this study provided in-depth insights into distinct microbial functional potentials under long-term chemical and organic fertilization that may have predictable consequences for soil nutrient cycling in agroecosystems of black soil region.
- 相关文献
作者其他论文 更多>>
-
Influences of Long-Term Fertilization on Phosphorus Forms and Availability Within Particle-Size Fractions in a Mollisol
作者:Zhang, Jinjing;Sun, Yuanhong;Tang, Jiayi;Li, Cuilan;Zhu, Mo;Zhu, Ping
关键词:Phosphorus species; Chemical fractionation; Nuclear magnetic resonance; Enzymatic hydrolysis; Manure; Mineral fertilizers
-
Molecular Composition of Soil Organic Matter Fractions Under Long-Term Post-Agricultural Restoration Across a Large Climate Gradient
作者:Song, Fanbo;Li, Qiang;Wang, Yidong;Hu, Ning;Lou, Yilai;Zhang, Huimin;Li, Dongchu;Zhu, Ping;Gao, Hongjun;Zhang, Shuiqing;Chen, Shufeng
关键词:chemical composition; natural vegetation restoration; organo-mineral association; particulate organic matter; Py-GC/MS
-
Long-Term Fertilization Effects on Forms and Availability of Phosphorus Associated with Humic Substance Fractions in a Mollisol in Northeast China
作者:Zhang, Jinjing;Sun, Yuanhong;Yuan, Yuhan;Ma, Hongbin;Feng, Yanhui;Zhang, Zhihan;Tang, Jiayi;Li, Cuilan;Zhu, Mo;Zhu, Ping
关键词:Phosphorus; Humic acid; Humin; Nuclear magnetic resonance; Enzymatic hydrolysis; Long-term fertilization
-
Phosphorus Distribution within Aggregates in Long-Term Fertilized Black Soil: Regulatory Mechanisms of Soil Organic Matter and pH as Key Impact Factors
作者:Zhang, Naiyu;Wang, Qiong;Chen, Yanhua;Zhang, Shuxiang;Zhang, Xianmei;Zhang, Naiyu;Feng, Gu;Gao, Hongjun;Peng, Chang;Zhu, Ping
关键词:phosphorus forms; soil aggregates; long-term fertilization; soil organic carbon; soil pH
-
Different long-term fertilization regimes affect soil protists and their top-down control on bacterial and fungal communities in Mollisols
作者:Hu, Xiaojing;Gu, Haidong;Liu, Junjie;Jin, Jian;Wang, Guanghua;Wei, Dan;Zhou, Baoku;Chen, Xueli;Zhu, Ping;Cui, Xi'an;Wei, Dan;Wang, Guanghua
关键词:Fertilization; Protistan community; Functional group; Inter-kingdom interactions; Mollisols
-
Long-term Fertilizer Application Induces Changes in Carbon Storage and Distribution, and the Consequent Color of Black soil
作者:Gao, Jichao;Wang, Lichun;Gao, Hongjun;Li, Qiang;Zhang, Xiuzhi;Zhu, Ping;Peng, Chang;Jiao, Yunfei;Luo, Jiafa;Qiu, Weiwen;Xu, Lingying
关键词:Black soil; Fertilizer; Soil color; Humic substances; Soil carbon
-
Divergent chemical compositions of soil organic matter size fractions under long-term amendments across a climate gradient
作者:Song, Fanbo;Wang, Yidong;Hu, Ning;Lou, Yilai;Zhang, Huimin;Li, Dongchu;Zhu, Ping;Gao, Hongjun;Zhang, Shuiqing
关键词:N-containing compounds; Organo-mineral association; Particulate organic matter; Py-GC/MS; Soil organic matter chemistry



