您好,欢迎访问河南省农业科学院 机构知识库!

Effects of the combined application of organic and chemical nitrogen fertilizer on soil aggregate carbon and nitrogen: A 30-year study

文献类型: 外文期刊

作者: Bai, Jin-shun 1 ; Zhang, Shui-qing 3 ; Huang, Shao-min 3 ; Xu, Xin-peng 1 ; Zhao, Shi-cheng 1 ; Qiu, Shao-jun 1 ; He, Ping 1 ; Zhou, Wei 1 ;

作者机构: 1.Chinese Acad Agr Sci, Inst Agr Resources & Reg Planning, State Key Lab Efficient Utilizat Arid & Semi Arid, Beijing 100081, Peoples R China

2.Chinese Acad Agr Sci, Inst Agr Resources & Reg Planning, Key Lab Plant Nutr & Fertilizers, Minist Agr & Rural Affairs, Beijing 100081, Peoples R China

3.Henan Acad Agr Sci, Inst Plant Nutr & Resource Environm, Zhengzhou 450002, Peoples R China

关键词: soil aggregate fractions; soil organic matter; manure application; straw return; C:N ratio

期刊名称:JOURNAL OF INTEGRATIVE AGRICULTURE ( 影响因子:4.8; 五年影响因子:4.8 )

ISSN: 2095-3119

年卷期: 2023 年 22 卷 11 期

页码:

收录情况: SCI

摘要: To understand the long-term effects of combined organic and chemical nitrogen fertilization on soil organic C (SOC) and total N (TN), we conducted a 30-year field experiment with a wheat-maize rotation system on the Huang-Huai Hai Plain during 1990-2019. The experimental treatments consisted of five fertilizer regimes: no fertilizer (control), chemical fertilizer only (NPK), chemical fertilizer with straw (NPKS), chemical fertilizer with manure (NPKM), and 1.5 times the rate of NPKM (1.5NPKM). The NPK, NPKS, and NPKM treatments had equal N inputs. The crop yields were measured over the whole experimental duration. Soil samples were collected from the topsoil (0-10 and 10-20 cm) and subsoil (20-40 cm) layers for assessing soil aggregates and taking SOC and TN measurements. Compared with the NPK treatment, the SOC and TN contents increased significantly in both the topsoil (24.1-44.4% for SOC and 22.8-47.7% for TN) and subsoil layers (22.0-47.9% for SOC and 19.8-41.8% for TN) for the organically amended treatments (NPKS, NPKM and 1.5NPKM) after 30 years, while no significant differences were found for the average annual crop yields over the 30 years of the experiment. The 0-10 cm layer of the NPKS treatment and the 20-40 cm layer of the NPKM treatment had significantly higher macroaggregate fraction mass proportions (19.8 and 27.0%) than the NPK treatment. However, the 0-10 and 20-40 cm layers of the 1.5NPKM treatment had significantly lower macroaggregate fraction mass proportions (-19.2 and -29.1%) than the control. The analysis showed that the higher SOC and TN in the soil of organically amended treatments compared to the NPK treatment were related to the increases in SOC and TN protected in the stable fractions (i.e., free microaggregates and microaggregates within macroaggregates), in which the contributions of the stable fractions were 81.1-91.7% of the increase in SOC and 83.3-94.0% of the increase in TN, respectively. The relationships between average C inputs and both stable SOC and TN stocks were significantly positive with R-2 values of 0.74 and 0.72 (P<0.01) for the whole 40 cm soil profile, which indicates the importance of N for soil C storage. The results of our study provide key evidence that long-term combined organic and chemical nitrogen fertilization, while maintaining reasonable total N inputs, benefited soil C and N storage in both the topsoil and subsoil layers.

  • 相关文献
作者其他论文 更多>>