Application performance and nutrient stoichiometric variation of ecological ditch systems in treating non-point source pollutants from paddy fields
文献类型: 外文期刊
作者: Wang, Junli 1 ; Chen, Guifa 1 ; Fu, Zishi 1 ; Song, Xiangfu 1 ; Yang, Linzhang 3 ; Liu, Fuxing 1 ;
作者机构: 1.Shanghai Acad Agr Sci, Ecoenvironm Protect Res Inst, Shanghai 201403, Peoples R China
2.Shanghai Engn Res Ctr Low Carbon Agr SERCLA, Shanghai 201415, Peoples R China
3.Jiangsu Acad Agr Sci, Inst Agr Resources & Environm, Nanjing 210014, Peoples R China
关键词: Agricultural non-point source pollution; Ecological ditch; Nutrient; Removal efficiency; Stoichiometric characteristics
期刊名称:AGRICULTURE ECOSYSTEMS & ENVIRONMENT ( 影响因子:5.567; 五年影响因子:6.064 )
ISSN: 0167-8809
年卷期: 2020 年 299 卷
页码:
收录情况: SCI
摘要: Nutrient emissions from paddy fields are one of the main sources of agricultural non-point source (NPS) pollution. Based on the "4R" (Reduce-Retain-Reuse-Restore) strategical system of agricultural NPS pollution control, ecological ditches are effective control measures under the "Retain" system. In this study, the nutrient removal efficiency and stoichiometric variations in three different ecological ditch systems were studied in order to better understand the long-term performance of ecological ditches, and to determine which type of ecological ditch system (Eh, concrete ecological ditch with holes on the wall; Ec, concrete ecological ditch; and Es, soil ecological ditch) is optimal for the removal of agricultural NPS pollutants. The results indicated that the converted ecological ditch (Eh type) significantly reduced nutrient levels in two-year rice season runoff compared to a traditional concrete ditch. The average removal efficiencies of total organic carbon (TOC), total nitrogen (TN) and total phosphorus (TP) in the converted ecological ditch were 20.8 %, 37.0 %, and 44.4 %, respectively. All ecological ditch types had considerable capacity to remove nutrients in simulated rice season runoff. There were no significant differences in the efficiency of nutrient removal between Eh (TOC 24.1 %, TN 42.8 %, and TP 52.6 %) and Es (TOC 20.3 %, TN 35.7 %, and TP 47.9 %). However, the results indicated that Eh systems could provide a relatively stable environment for plants with increased capacity to maintain biological homeostasis. Of the three ditch types, Ec (TOC 12.9 %, TN 23.3 %, and TP 32.6 %) had a relatively low removal efficiency. Redundancy analysis (RDA) indicated that leaf P content, sediment C:N ratio and root N content were more closely related to water variables, and nutrient stoichiometric characteristics of water, plants, and sediment systems were significantly related to the nutrient removal capacity of ecological ditches (99.5 % of the total variation). It is anticipated that this study will promote further development of the "4R" strategical system, and encourage additional improvements to ecological ditches so they can become more effective in reducing agricultural NPS pollution in the field.
- 相关文献
作者其他论文 更多>>
-
Linking rhizospheric microbiota and metabolite interactions with harvested aboveground carbon and soil carbon of lakeshore reed wetlands in a subtropical region
作者:Wang, Junli;Fu, Zishi;Qiao, Hongxia;Liu, Fuxing;Bi, Yucui;Wang, Junli;Fu, Zishi;Qiao, Hongxia;Liu, Fuxing;Bi, Yucui
关键词:Aboveground carbon fixation; Bacteria; Lakeshore wetland; Metabolite; Soil carbon content; Rhizosphere
-
Nitrogen removal performance and mechanism in constructed wetlands under saline conditions: Role of Canna indica inoculated with Piriformospora indica
作者:Cui, Naxin;Cai, Min;Zhang, Xu;Zeng, Rong;Zhou, Li;Chen, Guifa;Zou, Guoyan;Cui, Naxin;Cai, Min;Zhang, Xu;Zeng, Rong;Zhou, Li;Chen, Guifa;Zou, Guoyan;Cui, Naxin;Zeng, Rong
关键词:Phytoremediation; Salt stress; Rhizosphere microbe; Plant uptake; Growth-promoting fungus
-
Enhancing total nitrogen removal in constructed wetlands: A Comparative study of iron ore and biochar amendments
作者:Bi, Yucui;Liu, Fuxing;Fu, Zishi;Qiao, Hongxia;Wang, Junli;Bi, Yucui;Liu, Fuxing;Fu, Zishi;Qiao, Hongxia;Wang, Junli
关键词:Constructed wetlands; Nitrogen removal; Biochar; Iron ore; FeCl3-Modified biochar; Functional genera
-
Identifying the Spatial Risk Patterns of Agricultural Non-Point Source Pollution in a Basin of the Upper Yangtze River
作者:Wang, Junli;Fu, Zishi;Qiao, Hongxia;Bi, Yucui;Liu, Fuxing;Wang, Junli;Fu, Zishi;Qiao, Hongxia;Bi, Yucui;Liu, Fuxing
关键词:agricultural non-point source pollution; spatial risk pattern; source-sink theory; minimum cumulative resistance; water quality
-
Effects of substrate improvement on winter nitrogen removal in riparian reed (Phragmites australis) wetlands: rhizospheric crosstalk between plants and microbes
作者:Wang, Junli;Fu, Zishi;Liu, Fuxing;Qiao, Hongxia;Bi, Yucui;Wang, Junli;Fu, Zishi;Liu, Fuxing;Qiao, Hongxia;Bi, Yucui
关键词:Substrate; Riparian reed wetland; Winter nitrogen removal; Rhizosphere; Root metabolite; Microbial community
-
Occurrence and temporal variation of antibiotics and antibiotic resistance genes in hospital inpatient department wastewater: Impacts of daily schedule of inpatients and wastewater treatment process
作者:Cai, Min;Gu, Haotian;Zhang, Xu;Cui, Naxin;Zhou, Li;Chen, Guifa;Zou, Guoyan;Cai, Min;Zhang, Xu;Cui, Naxin;Zhou, Li;Chen, Guifa;Zou, Guoyan;Wang, Zhenglu;Dong, Hui
关键词:Antibiotic resistance genes; Inpatient department; Temporal variation; Self-contained wastewater treatment process; Daily schedule of inpatients
-
Phytoremediation of Secondary Salinity in Greenhouse Soil with Astragalus sinicus, Spinacea oleracea and Lolium perenne
作者:Cai, Shumei;Xu, Sixin;Zhang, Deshan;Fu, Zishi;Zhang, Hanlin;Zhu, Haitao
关键词:phytoremediation; secondary salinization; salt tolerance; microbial diversity; nutrient accumulation