文献类型: 外文期刊
作者: Wu, Jintao 1 ; Yang, Guijun 1 ; Yang, Hao 1 ; Zhu, Yaohui 1 ; Li, Zhenhai 1 ; Lei, Lei 1 ; Zhao, Chunjiang 1 ;
作者机构: 1.Beijing Res Ctr Informat Technol Agr, Key Lab Quantitat Remote Sensing Agr, Minist Agr & Rural Affairs, Beijing 100097, Peoples R China
2.Natl Engn Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China
3.Anhui Univ, Sch Comp Sci & Technol, Hefei 230601, Peoples R China
关键词: UAV; Apple tree; Deep learning; Computer vision; Detection; Segmentation
期刊名称:COMPUTERS AND ELECTRONICS IN AGRICULTURE ( 影响因子:5.565; 五年影响因子:5.494 )
ISSN: 0168-1699
年卷期: 2020 年 174 卷
页码:
收录情况: SCI
摘要: Manual measurement and visual inspection is a common practice for acquiring crop data in orchards and is a labor-intensive, time-consuming, and costly task. Accurate and rapid acquisition of crop data is vital for monitoring the dynamics of tree growth and optimizing farm management. In this work, we present a technique for orchard data acquisition and analysis that uses remote imagery acquired from unmanned aerial vehicles (UAVs) combined with deep learning convolutional neural networks to automatically detect and segment individual trees and measure the crown width, perimeter, and crown projection area of apple trees. By using an UAV platform, 50 high-resolution images of apple trees were collected from an orchard during dormancy (bare branches), and then each apple tree was detected by using a Faster R-CNN object detector. Based on these results, each tree was segmented by using a U-Net deep learning network. After convex tree boundaries were extracted from the semantic segmentation results by using an efficient pruning strategy, the crown parameters were automatically calculated, and the accuracy was compared with that obtained by manual delineation. The results show that the proposed remote sensing technique can be used to detect and count apple trees with precision and recall of 91.1% and 94.1%, respectively, segment their branches with an overall accuracy of 97.1%, and estimate crown parameter with an overall accuracy exceeding 92%. We conclude that this method not only saves labor by avoiding field measurements but also allows growers to dynamically monitor the growth of orchard trees.
- 相关文献
作者其他论文 更多>>
-
UssNet: a spatial self-awareness algorithm for wheat lodging area detection
作者:Zhang, Jun;Wu, Qiang;Duan, Fenghui;Liu, Cuiping;Xiong, Shuping;Ma, Xinming;Cheng, Jinpeng;Feng, Mingzheng;Dai, Li;Wang, Xiaochun;Yang, Hao;Yang, Guijun;Chang, Shenglong
关键词:Unmanned aerial vehicle; State space models; Wheat lodging area identification; Semantic segmentation
-
Recognition of maize seedling under weed disturbance using improved YOLOv5 algorithm
作者:Tang, Boyi;Zhao, Chunjiang;Tang, Boyi;Zhou, Jingping;Pan, Yuchun;Qu, Xuzhou;Cui, Yanglin;Liu, Chang;Li, Xuguang;Zhao, Chunjiang;Gu, Xiaohe;Li, Xuguang
关键词:Object detection; Maize seedlings; UAV RGB images; YOLOv5; Attention mechanism
-
Boosting Cost-Efficiency in Robotics: A Distributed Computing Approach for Harvesting Robots
作者:Xie, Feng;Xie, Feng;Li, Tao;Feng, Qingchun;Li, Tao;Feng, Qingchun;Chen, Liping;Zhao, Chunjiang;Zhao, Hui
关键词:5G network; computation allocation; edge computing; harvesting robot; visual system
-
A Comprehensive Evaluation of Monocular Depth Estimation Methods in Low-Altitude Forest Environment
作者:Jia, Jiwen;Kang, Junhua;Gao, Xiang;Zhang, Borui;Yang, Guijun;Chen, Lin;Yang, Guijun
关键词:monocular depth estimation; CNN; vision transformer; forest environment; comparative study
-
Genotyping Identification of Maize Based on Three-Dimensional Structural Phenotyping and Gaussian Fuzzy Clustering
作者:Xu, Bo;Zhao, Chunjiang;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao
关键词:tassel; 3D phenotyping; TreeQSM; genotyping; clustering
-
High-throughput phenotyping techniques for forage: Status, bottleneck, and challenges
作者:Cheng, Tao;Zhang, Dongyan;Cheng, Tao;Wang, Zhaoming;Zhang, Dongyan;Zhang, Gan;Yuan, Feng;Liu, Yaling;Wang, Tianyi;Ren, Weibo;Zhao, Chunjiang
关键词:Forage; High-throughput phenotyping; Precision identification; Sensors; Artificial intelligence; Efficient breeding
-
Estimation of Leaf Chlorophyll Content of Maize from Hyperspectral Data Using E2D-COS Feature Selection, Deep Neural Network, and Transfer Learning
作者:Chen, Riqiang;Feng, Haikuan;Hu, Haitang;Chen, Riqiang;Ren, Lipeng;Yang, Guijun;Cheng, Zhida;Zhao, Dan;Zhang, Chengjian;Feng, Haikuan;Hu, Haitang;Yang, Hao;Chen, Riqiang;Zhang, Chengjian;Ren, Lipeng;Feng, Haikuan
关键词:maize; chlorophyll; radiative transfer model; feature selection; transfer learning



