Image Super-Resolution Reconstruction Using Generative Adversarial Networks Based on Wide-Channel Activation
文献类型: 外文期刊
作者: Sun, Xudong 1 ; Zhao, Zhenxi 1 ; Zhang, Song 2 ; Liu, Jintao 2 ; Yang, Xinting 2 ; Zhou, Chao 2 ;
作者机构: 1.East China Jiaotong Univ, Sch Mechatron Engn, Nanchang 330013, Jiangxi, Peoples R China
2.Natl Engn Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China
3.Beijing Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China
4.Natl Engn Lab Agriprod Qual Traceabil, Beijing 100097, Peoples R China
5.Univ Almeria, Sch Engn, Almeria 04120, Spain
关键词: Super-resolution; residual block; relativistic average discriminator; generative adversarial network; perceived quality
期刊名称:IEEE ACCESS ( 影响因子:3.367; 五年影响因子:3.671 )
ISSN: 2169-3536
年卷期: 2020 年 8 卷
页码:
收录情况: SCI
摘要: In recent years, residual learning has shown excellent performance on convolutional neural network (CNN)-based single-image super-resolution (SISR) tasks. However, CNN-based SISR approaches have focused mainly on the design of deep architectures, and the rectified linear units (ReLUs) used in these networks hinder shallow-to-deep information transfer. As a result, these methods are unable to utilize some shallow information, and improving model performance is difficult. To solve the above issues, this paper proposes an image SR reconstruction method based on a generative adversarial network with a residual dense architecture. First, before ReLU activation, the number of feature channels is expanded by a factor of 6 similar to 9 using a 1 x 1 convolutional layer, which improves the utilization of shallow information. Next, the original discriminator is replaced with a relativistic average discriminator, thereby improving the authenticity of the discriminative network. Finally, preactivation features are used to improve the perceptual loss, thus providing stronger monitoring for brightness consistency and texture restoration. Experimental results show that the proposed algorithm improves the utilization of shallow information in a deep network. Structural similarity (SSIM) index evaluations show that the overall utilization of shallow information is increased by 105.52%. In addition, the average runtime is 0.42 sec/frame, nearly 3.6 times faster than those of traditional methods. Moreover, the recovered images have an average natural image quality evaluator value of 3.4 and high perceptual quality, showing that the proposed method is suitable for image reconstruction applications in fields such as agriculture and medicine.
- 相关文献
作者其他论文 更多>>
-
2D/0D Heterojunction Fluorescent Probe with Schottky Barrier Based on Ti3C2TX MXene Loaded Graphene Quantum Dots for Detection of H2S During Food Spoilage
作者:Jia, Zhixin;Ji, Zengtao;Yang, Xinting;Shi, Ce;Jia, Zhixin;Yang, Xinting;Shi, Ce;Sun, Xia;Guo, Yemin;Jia, Zhixin;Ji, Zengtao;Yang, Xinting;Shi, Ce;Jia, Zhixin;Ji, Zengtao;Yang, Xinting;Shi, Ce;Jia, Zhixin;Ji, Zengtao;Yang, Xinting;Shi, Ce;Zhang, Jingbin;Zhang, Jingbin;Zhang, Jiaran
关键词:fluorescent probe; graphene quantum dots; H2S contamination; heterojunction; Ti3C2Tx MXene
-
DF-DETR: Dead fish-detection transformer in recirculating aquaculture system
作者:Fu, Tingting;Feng, Dejun;Li, Shantan;Fu, Tingting;Ma, Pingchuan;Hu, Weichen;Yang, Xinting;Li, Shantan;Zhou, Chao;Fu, Tingting;Ma, Pingchuan;Hu, Weichen;Yang, Xinting;Li, Shantan;Zhou, Chao;Fu, Tingting;Ma, Pingchuan;Hu, Weichen;Yang, Xinting;Li, Shantan;Zhou, Chao
关键词:DF-DETR; Dead fish detection; Feature fusion; Recirculating aquaculture system
-
DAMI-YOLOv8l: A multi-scale detection framework for light-trapping insect pest monitoring
作者:Chen, Xiao;Hu, Huan;Li, Tianjun;Chen, Xiao;Yang, Xinting;Hu, Huan;Li, Tianjun;Zhou, Zijie;Li, Wenyong;Chen, Xiao;Yang, Xinting;Hu, Huan;Li, Tianjun;Zhou, Zijie;Li, Wenyong;Chen, Xiao;Yang, Xinting;Hu, Huan;Li, Tianjun;Zhou, Zijie;Li, Wenyong;Zhou, Zijie
关键词:Pest detection; YOLOv8; Fusion features; Small objects; Multiple scale detection
-
Semi-supervised fish school density estimation and counting network in recirculating aquaculture systems based on adaptive density proxy
作者:Zhu, Kaijie;Yang, Xinting;Yang, Caiwei;Fu, Tingting;Ma, Pingchuan;Hu, Weichen;Zhou, Chao;Zhu, Kaijie;Yang, Xinting;Yang, Caiwei;Fu, Tingting;Ma, Pingchuan;Hu, Weichen;Zhou, Chao;Zhu, Kaijie;Yang, Xinting;Yang, Caiwei;Fu, Tingting;Ma, Pingchuan;Hu, Weichen;Zhou, Chao;Zhu, Kaijie;Ma, Pingchuan
关键词:Fish school density estimation; Aquaculture; Machine vision; Adaptive density proxy
-
Typical farming behaviors recognition in aquaculture using an improved VMamba approach
作者:Sun, Chenglin;Liu, Chenjian;Sun, Chenglin;Yang, Xinting;Liu, Chenjian;Ye, Yuming;Li, Shantan;Xu, Xudong;Zhou, Chao;Sun, Chenglin;Yang, Xinting;Liu, Chenjian;Ye, Yuming;Li, Shantan;Xu, Xudong;Zhou, Chao;Sun, Chenglin;Yang, Xinting;Liu, Chenjian;Ye, Yuming;Li, Shantan;Xu, Xudong;Zhou, Chao
关键词:VMamba; EMA; IDConv; Farming behaviors recognition; CGFormer; Aquaculture
-
Morphological feature assessment of Larimichthys crocea for quality grading: a computer vision approach
作者:Feng, Dejun;Liu, Hang;Gui, Fukun;Wu, Lianhui;Ying, Xiaoguo;Qu, Xiaoyu;Gao, Yang;Zhou, Chao
关键词:Large yellow croaker; Morphological feature detection; Grading evaluation system; Pectoral fin detection; Fin-to-eye length
-
From passive to self-aware packs: Flexible Sensor-AI integration powering intelligent, sustainable food packaging
作者:Hou, Hongwei;Chen, Huan;Fu, Yaning;Mu, Wenjun;Zhang, Jingbin;Jia, Zhixin;Yang, Xinting
关键词:Smart food packaging; Flexible sensors; Artificial intelligence; Shelf-life prediction; Human-computer interaction AI



