您好,欢迎访问河南省农业科学院 机构知识库!

Unlocking the relationships among population structure, plant architecture, growing season, and environmental adaptation in Henan wheat cultivars

文献类型: 外文期刊

作者: Yang, Jian 1 ; Zhou, Yanjie 1 ; Hu, Weiguo 1 ; Zhang, Yu'e 1 ; Zhou, Yong 3 ; Chen, Yongxing 4 ; Wang, Xicheng 1 ; Zhao, 1 ;

作者机构: 1.Henan Acad Agr Sci, Wheat Res Inst, Zhengzhou 450002, Henan, Peoples R China

2.Henan Acad Agr Sci, Henan Acad Crop Mol Breeding, Zhengzhou 450002, Peoples R China

3.King Abdullah Univ Sci & Technol KAUST, Ctr Desert Agr, Biol & Environm Sci & Engn Div BESE, Thuwal 239556900, Saudi Arabia

4.Chinese Acad Sci, State Key Lab Plant Cell & Chromosome Engn, Inst Genet & Dev Biol, Beijing 100101, Peoples R China

关键词: Elite wheat cultivars; Population structure; Yield; GWAS; Selective sweep

期刊名称:BMC PLANT BIOLOGY ( 影响因子:4.215; 五年影响因子:4.96 )

ISSN: 1471-2229

年卷期: 2020 年 20 卷 1 期

页码:

收录情况: SCI

摘要: BackgroundEcological environments shape plant architecture and alter the growing season, which provides the basis for wheat genetic improvement. Therefore, understanding the genetic basis of grain yield and yield-related traits in specific ecological environments is important.ResultsA structured panel of 96 elite wheat cultivars grown in the High-yield zone of Henan province in China was genotyped using an Illumina iSelect 90K SNP assay. Selection pressure derived from ecological environments of mountain front and plain region provided the initial impetus for population divergence. This determined the dominant traits in two subpopulations (spike number and spike percentage were dominance in subpopulation 2:1; thousand-kernel weight, grain filling rate (GFR), maturity date (MD), and fertility period (FP) were dominance in subpopulation 2:2), which was also consistent with their inheritance from the donor parents. Genome wide association studies identified 107 significant SNPs for 12 yield-related traits and 10 regions were pleiotropic to multiple traits. Especially, GY was co-located with MD/FP, GFR and HD at QTL-ple5A, QTL-ple7A.1 and QTL-ple7B.1 region. Further selective sweep analysis revealled that regions under selection were around QTLs for these traits. Especially, grain yield (GY) is positively correlated with MD/FP and they were co-located at the VRN-1A locus. Besides, a selective sweep signal was detected at VRN-1B locus which was only significance to MD/FP.ConclusionsThe results indicated that extensive differential in allele frequency driven by ecological selection has shaped plant architecture and growing season during yield improvement. The QTLs for yield and yield components detected in this study probably be selectively applied in molecular breeding.

  • 相关文献
作者其他论文 更多>>