Overexpression of a Grape MYB Transcription Factor Gene VhMYB2 Increases Salinity and Drought Tolerance in Arabidopsis thaliana
文献类型: 外文期刊
作者: Ren, Chuankun 1 ; Li, Zhenghao 1 ; Song, Penghui 2 ; Wang, Yu 3 ; Liu, Wanda 3 ; Zhang, Lihua 1 ; Li, Xingguo 1 ; Li, Wenhui 1 ; Han, Deguo 1 ;
作者机构: 1.Northeast Agr Univ, Minist Agr & Rural Affairs, Coll Hort & Landscape Architecture, Natl Local Joint Engn Res Ctr Dev & Utilizat Small, Harbin 150030, Peoples R China
2.Heilongjiang Acad Agr Sci, Inst Rural Revitalizat Sci & Technol, Harbin 150028, Peoples R China
3.Heilongjiang Acad Agr Sci, Hort Branch, Harbin 150040, Peoples R China
关键词: grape; VhMYB2; salinity; drought; Arabidopsis thaliana
期刊名称:INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES ( 影响因子:5.6; 五年影响因子:6.2 )
ISSN: 1661-6596
年卷期: 2023 年 24 卷 13 期
页码:
收录情况: SCI
摘要: In viticulture, the highly resistant rootstock 'Beta' is widely used in Chinese grape production to avoid the effects of soil salinization and drought on grape growth. However, the mechanism of high resistance to abiotic stress in the 'Beta' rootstock is not clear. In this study, we demonstrated that VhMYB2 as a transcription factor made a significant contribution to salinity and drought stress, which was isolated from the 'Beta' rootstock. The coding sequence of the VhMYB2 gene was 858 bp, encoding 285 amino acids. The subcellular localization of VhMYB2 was located in the nucleus of tobacco epidermal cells. Moreover, RT-qPCR found that VhMYB2 was predominantly expressed in the mature leaf and root of the grape. Under salinity and drought stress, overexpressing VhMYB2 showed a higher resistant phenotype and survival rates in A. thaliana while the transgenic lines had a survival advantage by measuring the contents of proline, chlorophyll, and MDA, and activities of POD, SOD, and CAT, and expression levels of related stress response genes. The results reveal that VhMYB2 may be an important transcription factor regulating 'Beta' resistance in response to abiotic stress.
- 相关文献
作者其他论文 更多>>
-
Overexpression of a Malus baccata (L.) Borkh WRKY Factor Gene MbWRKY33 Increased High Salinity Stress Tolerance in Arabidopsis thaliana
作者:Wang, Xinhui;Gao, Ming;Kong, Yihan;Yu, Qian;Yao, Lu;Li, Xingguo;Li, Wenhui;Zhang, Lihua;Han, Deguo;Liu, Wanda;Hou, Ruining
关键词:
Malus baccata ;MbWRKY33 ; high-salinity stress; genetic transformation; transcriptional regulation -
Composition of Flavonoids and Nutritional Evaluation in Leaves of Different Sea-Buckthorn Germplasm Resources
作者:Yuan, Yue;Yao, Wentao;Yuan, Yue;Yao, Wentao;Yuan, Yue;Yao, Wentao;Yu, Zeyuan;Huo, Junwei;Li, Xingguo;Wu, Yuqi;Wang, Rui;Tang, Ke
关键词:evaluation; flavonoids; germplasm resources; leaf; nutritional components; sea buckthorn
-
Multi-response optimization and validation analysis in the detection of acetochlor and butachlor by HPLC based on D-optimal design methodology
作者:Wang, Yu;Yang, Yang;Zhang, Si;Wang, Bohan;Chi, Chao;Su, Junfeng
关键词:Acetochlor; Butachlor; HPLC; D -optimal design; Multi-response optimization
-
Widely Targeted Metabolomics Reveals Metabolic Divergence in Abutilon theophrasti Populations Under Glufosinate Ammonium Treatment
作者:Guo, Xiaotong;Wang, Yu;Guo, Yulian;Luo, Chan;Cong, Keqiang
关键词:
Abutilon theophrasti ; glufosinate ammonium; widely targeted metabolomics; metabolic pathways -
MbWRKY50 confers cold and drought tolerance through upregulating antioxidant capacity associated with ROS scavenging
作者:Wang, Xinhui;Li, Yingnan;Chen, Zhuo;Li, Longfeng;Li, Qiqi;Geng, Zihan;Zhang, Lihua;Han, Deguo;Liu, Wanda;Hou, Ruining
关键词:Malus baccata; MbWRKY50; Abiotic stress responses; Transgenic tomato
-
Overexpression of a Fragaria x ananassa AP2/ERF Transcription Factor Gene (FaTINY2) Increases Cold and Salt Tolerance in Arabidopsis thaliana
作者:Li, Wenhui;Zhang, Wenhao;Li, Huiwen;Yao, Anqi;Ma, Zhongyong;Kang, Rui;Guo, Yanbo;Li, Xingguo;Han, Deguo;Yu, Wenquan
关键词:
FaTINY2 ; AP2/ERF; low temperature; high salt -
Overexpression of a Grape WRKY Transcription Factor VhWRKY44 Improves the Resistance to Cold and Salt of Arabidopsis thaliana
作者:Zhang, Lihua;Xing, Liwei;Dai, Jing;Li, Zhenghao;Zhang, Aoning;Li, Xingguo;Han, Deguo;Wang, Tianhe;Liu, Wanda
关键词:grape rootstock; resistance gene; salinity and chilly stress; genetic transformation; transcriptional regulation



