文献类型: 外文期刊
作者: Wang, Chunshan 1 ; Sun, Shedong 1 ; Zhao, Chunjiang 2 ; Mao, Zhenchuan 4 ; Wu, Huarui 2 ; Teng, Guifa 1 ;
作者机构: 1.Hebei Agr Univ, Sch Informat Sci & Technol, Baoding 071001, Peoples R China
2.Natl Engn Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China
3.Hebei Key Lab Agr Big Data, Baoding 071001, Peoples R China
4.Chinese Acad Agr Sci, Inst Vegetables & Flowers, Beijing 100081, Peoples R China
关键词: root-knot nematode; cucumber; target detection; YOLOv5
期刊名称:AGRONOMY-BASEL ( 影响因子:3.949; 五年影响因子:4.117 )
ISSN:
年卷期: 2022 年 12 卷 10 期
页码:
收录情况: SCI
摘要: The development of resistant cucumber varieties is of a great importance for reducing the production loss caused by root-knot nematodes. After cucumber plants are infected with root-knot nematodes, their roots will swell into spherical bumps. Rapid and accurate detection of the infected sites and assessment of the disease severity play a key role in selecting resistant cucumber varieties. Because the locations and sizes of the spherical bumps formed after different degrees of infection are random, the currently available detection and counting methods based on manual operation are extremely time-consuming and labor-intensive, and are prone to human error. In response to these problems, this paper proposes a cucumber root-knot nematode detection model based on the modified YOLOv5s model (i.e., YOLOv5-CMS) in order to support the breeding of resistant cucumber varieties. In the proposed model, the dual attention module (CBAM-CA) was adopted to enhance the model's ability of extracting key features, the K-means++ clustering algorithm was applied to optimize the selection of the initial cluster center, which effectively improved the model's performance, and a novel bounding box regression loss function (SIoU) was used to fuse the direction information between the ground-truth box and the predicted box so as to improve the detection precision. The experiment results show that the recall (R) and mAP of the YOLOv5s-CMS model were improved by 3% and 3.1%, respectively, compared to the original YOLOv5s model, which means it can achieve a better performance in cucumber root-knot nematode detection. This study provides an effective method for obtaining more intuitive and accurate data sources during the breeding of cucumber varieties resistant to root-knot nematode.
- 相关文献
作者其他论文 更多>>
-
Research on Positioning and Navigation System of Greenhouse Mobile Robot Based on Multi-Sensor Fusion
作者:Cheng, Bo;Li, Xiaoyue;Zhang, Ning;Song, Weitang;He, Xueying;Wu, Huarui
关键词:agricultural greenhouse; navigation robot; multi-sensor fusion; ultra-wideband; inertial measurement unit; odometry; rangefinder
-
Recognition of wheat rusts in a field environment based on improved DenseNet
作者:Chang, Shenglong;Cheng, Jinpeng;Fan, Zehua;Ma, Xinming;Li, Yong;Zhao, Chunjiang;Chang, Shenglong;Yang, Guijun;Cheng, Jinpeng;Fan, Zehua;Yang, Xiaodong;Zhao, Chunjiang
关键词:Plant disease; Wheat rust; Image processing; Deep learning; Computer vision (CV); DenseNet
-
GCVC: Graph Convolution Vector Distribution Calibration for Fish Group Activity Recognition
作者:Zhao, Zhenxi;Zhao, Chunjiang;Zhao, Zhenxi;Yang, Xinting;Zhou, Chao;Zhao, Chunjiang;Zhao, Zhenxi;Yang, Xinting;Zhou, Chao;Zhao, Chunjiang;Zhao, Zhenxi;Yang, Xinting;Zhou, Chao;Zhao, Chunjiang;Liu, Jintao
关键词:Fish; Feature extraction; Activity recognition; Calibration; Adhesives; Training; Convolution; Graph convolution vector calibration; fish group activity; activity feature vector calibration; fish activity dataset
-
Adaptive precision cutting method for rootstock grafting of melons: modeling, analysis, and validation
作者:Chen, Shan;Zhao, Chunjiang;Chen, Shan;Jiang, Kai;Zheng, Wengang;Jia, Dongdong;Zhao, Chunjiang;Jiang, Kai;Zheng, Wengang;Jia, Dongdong;Zhao, Chunjiang
关键词:Melon; Grafting robot; Adaptive cutting; Rootstock pith cavity; Machine vision
-
Long-range infrared absorption spectroscopy and fast mass spectrometry for rapid online measurements of volatile organic compounds from black tea fermentation
作者:Yang, Chongshan;Li, Guanglin;Zhao, Chunjiang;Fu, Xinglan;Yang, Chongshan;Jiao, Leizi;Wen, Xuelin;Lin, Peng;Duan, Dandan;Zhao, Chunjiang;Dong, Daming;Yang, Chongshan;Jiao, Leizi;Wen, Xuelin;Lin, Peng;Duan, Dandan;Dong, Daming;Dong, Chunwang
关键词:Black tea fermentation; Volatile organic compounds; Proton transfer reaction mass spectrometry; Fourier transform infrared spectroscopy; Principal component analysis; Extreme learning machine
-
Navigation line extraction algorithm for corn spraying robot based on YOLOv8s-CornNet
作者:Guo, Peiliang;Diao, Zhihua;Ma, Shushuai;He, Zhendong;Zhao, Suna;Zhao, Chunjiang;Li, Jiangbo;Zhang, Ruirui;Yang, Ranbing;Zhang, Baohua
关键词:agricultural robotics; computer vision; deep learning; navigation line extraction; network lightweight
-
An ultra-lightweight method for individual identification of cow-back pattern images in an open image set
作者:Wang, Rong;Gao, Ronghua;Li, Qifeng;Zhao, Chunjiang;Ding, Luyu;Yu, Ligen;Ma, Weihong;Wang, Rong;Zhao, Chunjiang;Gao, Ronghua;Li, Qifeng;Zhao, Chunjiang;Ding, Luyu;Yu, Ligen;Ma, Weihong;Ru, Lin
关键词:Cow-back pattern; Cow recognition; LightCowsNet; Open image set; Deep learning