您好,欢迎访问广东省农业科学院 机构知识库!

An LcMYB111-LcHY5 Module Differentially Activates an LcFLS Promoter in Different Litchi Cultivars

文献类型: 外文期刊

作者: Xiao, Zhidan 1 ; Wang, Jing 1 ; Jiang, Nonghui 1 ; Fan, Chao 1 ; Xiang, Xu 1 ; Liu, Wei 1 ;

作者机构: 1.Guangdong Acad Agr Sci, Inst Fruit Tree Res, Key Lab South Subtrop Fruit Biol & Genet Resource, Minist Agr & Rural Affairs,Guangdong Prov Key Lab, Guangzhou 510640, Peoples R China

关键词: LcFLS; flower color; flavonol; LcMYB111; LcHY5

期刊名称:INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES ( 影响因子:5.6; 五年影响因子:6.2 )

ISSN: 1661-6596

年卷期: 2023 年 24 卷 23 期

页码:

收录情况: SCI

摘要: Flavonol synthase (FLS) is the crucial enzyme of the flavonol biosynthetic pathways, and its expression is tightly regulated in plants. In our previous study, two alleles of LcFLS, LcFLS-A and LcFLS-B, have been identified in litchi, with extremely early-maturing (EEM) cultivars only harboring LcFLS-A, while middle-to-late-maturing (MLM) cultivars only harbor LcFLS-B. Here, we overexpressed both LcFLS alleles in tobacco, and transgenic tobacco produced lighter-pink flowers and showed increased flavonol levels while it decreased anthocyanin levels compared to WT. Two allelic promoters of LcFLS were identified, with EEM cultivars only harboring proLcFLS-A, while MLM cultivars only harbor proLcFLS-B. One positive and three negative R2R3-MYB transcription regulators of LcFLS expression were identified, among which only positive regulator LcMYB111 showed a consistent expression pattern with LcFLS, which both have higher expression in EEM than that of MLM cultivars. LcMYB111 were further confirmed to specifically activate proLcFLS-A with MYB-binding element (MBE) while being unable to activate proLcFLS-B with mutated MBE (MBEm). LcHY5 were also identified and can interact with LcMYB111 to promote LcFLS expression. Our study elucidates the function of LcFLS and its differential regulation in different litchi cultivars for the first time.

  • 相关文献
作者其他论文 更多>>