Potential Biological Control of Endophytic Streptomyces sp. 5-4 Against Fusarium Wilt of Banana Caused by Fusarium oxysporum f. sp. cubense Tropical Race 4
文献类型: 外文期刊
作者: Yun, Tianyan 1 ; Jing, Tao 2 ; Zhou, Dengbo 1 ; Zhang, Miaoyi 1 ; Zhao, Yankun 1 ; Li, Kai 1 ; Zang, Xiaoping 2 ; Zhang, Lu 3 ; Xie, Jianghui 1 ; Wang, Wei 1 ;
作者机构: 1.Chinese Acad Trop Agr Sci CATAS, Hainan Inst Trop Agr Resources, Key Lab Biol & Genet Resources Trop Crops, Inst Trop Biosci & Biotechnol,Minist Agr, Haikou 571101, Hainan, Peoples R China
2.Chinese Acad Trop Agr Sci, Haikou Expt Stn, Haikou 571101, Hainan, Peoples R China
3.Hainan Normal Univ, Coll Life Sci, Minist Educ,Key Lab Ecol Trop Isl, Key Lab Trop Anim & Plant Ecol Hainan Prov, Haikou 571158, Hainan, Peoples R China
关键词: antifungal mechanism; biocontrol; defense genes; endophytic; Fusarium wilt of banana; Streptomyces
期刊名称:PHYTOPATHOLOGY ( 影响因子:4.01; 五年影响因子:4.457 )
ISSN: 0031-949X
年卷期: 2022 年 112 卷 9 期
页码:
收录情况: SCI
摘要: Fusarium wilt of banana caused by Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4) is one of the most disastrous fungal diseases. Biological control is a promising strategy for controlling Fusarium wilt of banana. To explore endophytic actinomycetes as biocontrol resources against Foc TR4, antagonistic strains were isolated from different tissues of medicinal plants. Here, a total of 144 actinomycetes were isolated and belonged to Nonomuraea, Kitasatospora, and Streptomyces. Forty-three isolates exhibited antifungal activities against Foc TR4. The strain labeled with 5-4 isolated from roots of Piper austrosinense had a broad-spectrum antifungal activity by the production of chitinase and beta-1,3-glucanase and was identified as Streptomyces hygroscopicus subsp. hygroscopicus 5-4. Furthermore, disease index of banana wilt was significantly reduced by application of strain 5-4 in comparison with application of Foc TR4 alone. Exogenous application of strain 5-4 increased the expression levels of defense genes such as (PAL), peroxidase (POD), pathogenesis-related protein 1 (PR-1), hydrolytic enzymes (beta-1,3-glucanase), lysin motif receptor kinase 1 (LYK-1), and mitogen-activated protein kinase 1 (MPK-1). The antifungal mechanism assay demonstrated that extracts of strain 5-4 inhibited spore gemination and hyphal growth of Foc TR4, and caused abnormally swollen, deformity, and rupture of Foc TR4 hypha. Thus, S. hygroscopicus subsp. hygroscopicus 5-4 could be used as a potential biological agent for controlling Fusarium wilt of banana.
- 相关文献
作者其他论文 更多>>
-
Genome-wide identification of Saccharum Sec14-like PITP gene family reveals that ScSEC14-1 is positively involved in disease resistance
作者:Su, Yachun;Feng, Jingfang;You, Chuihuai;Zang, Shoujian;Wang, Wei;Wang, Dongjiao;Mao, Huaying;Chen, Yao;Luo, Jun;Que, Youxiong;Su, Yachun;Su, Yachun;Sun, Tingting;Que, Youxiong
关键词:Sugarcane; Phosphatidylinositol transfer protein (PITP); Genome-wide identification; Pathogen infection; Disease resistance
-
Biocontrol mechanism of Bacillus siamensis sp. QN2MO-1 against tomato fusarium wilt disease during fruit postharvest and planting
作者:Zhang, Miaoyi;Li, Xiaojuan;Qi, Dengfeng;Zhou, Dengbo;Chen, Yufeng;Feng, Junting;Wei, Yongzan;Zhao, Yankun;Li, Kai;Wang, Wei;Xie, Jianghui;Zhang, Miaoyi;Li, Xiaojuan;Qi, Dengfeng;Zhou, Dengbo;Chen, Yufeng;Feng, Junting;Wei, Yongzan;Zhao, Yankun;Li, Kai;Wang, Wei;Xie, Jianghui;Zhang, Lu;Pan, Yongbo
关键词:Bacillus siamensis; Tomato fusarium wilt; Biological control; Whole genome sequencing
-
Water-Retaining Agent as a Sustainable Agricultural Technique to Enhance Mango (Mangifera indica L.) Productivity in Tropical Soils
作者:Zang, Xiaoping;Yun, Tianyan;Wang, Lixia;Ding, Zheli;Eissa, Mamdouh A.;Jing, Tao;Liu, Yongxia;Xie, Jianghui;He, Yingdui;Zhan, Rulin;Ma, Weihong;Eissa, Mamdouh A.
关键词:modern irrigation; fertigation; nutritional value; economic benefit; soil nutrients
-
Sugarcane transcription factor ScWRKY4 negatively regulates resistance to pathogen infection through the JA signaling pathway
作者:Wang, Dongjiao;Wang, Wei;Zang, Shoujian;Qin, Liqian;Liang, Yanlan;Lin, Peixia;Su, Yachun;Que, Youxiong;Que, Youxiong
关键词:Disease resistance; Expression profile; Transcriptome analysis; WRKY transcription factors
-
In Vitro Propagation Technology for the Endangered Aquatic Species Nymphoides coronata
作者:Lin, Fei;Kang, Yong;Li, Yamei;Guo, Yuhua;Yang, Guangsui;Yin, Junmei;Tang, Fenling;Lin, Fei;Eissa, Mamdouh A.;Wang, Wei;Yin, Junmei;Eissa, Mamdouh A.
关键词:tissue culture; Nymphoides; plant growth regulators; 6-BA; IAA; NAA
-
Physiological and Transcriptional Characteristics of Banana Seedlings in Response to Nitrogen Deficiency Stress
作者:Zhao, Lei;Zhang, Bencheng;Zhao, Lei;Cai, Bingyu;Zhang, Bencheng;Feng, Junting;Zhou, Dengbo;Chen, Yufeng;Zhang, Miaoyi;Qi, Dengfeng;Wang, Wei;Xie, Jianghui;Wei, Yongzan;Zhao, Lei;Cai, Bingyu;Zhang, Xiaohan;Zhang, Bencheng;Feng, Junting;Zhou, Dengbo;Chen, Yufeng;Zhang, Miaoyi;Qi, Dengfeng;Wang, Wei;Xie, Jianghui;Wei, Yongzan
关键词:banana; nitrogen deficiency; photosynthetic parameters; transcription level; phytohormone
-
Taxonomic identification and antagonistic activity of Streptomyces luomodiensis sp. nov. against phytopathogenic fungi
作者:Qi, Dengfeng;Liu, Qiao;Zou, Liangping;Zhang, Miaoyi;Li, Kai;Zhao, Yankun;Chen, Yufeng;Feng, Junting;Zhou, Dengbo;Wei, Yongzan;Wang, Wei;Xie, Jianghui;Zhang, Lu
关键词:Streptomyces; novel species; antifungal activity; taxonomic identification; banana Fusarium disease; antagonistic mechanism



