您好,欢迎访问中国水产科学研究院 机构知识库!

Variations in retention efficiency of bivalves to different concentrations and organic content of suspended particles

文献类型: 外文期刊

作者: Zhang Jihong 1 ; Fang Jianguang 1 ; Liang Xingming 1 ;

作者机构: 1.Chinese Acad Fishery Sci, Yellow Sea Fisheries Res Inst, Qingdao 266071, Peoples R China

关键词: retention efficiency;Mytilus edulis;Crassostrea gigas;Chlamys farreri

期刊名称:CHINESE JOURNAL OF OCEANOLOGY AND LIMNOLOGY ( 影响因子:1.068; 五年影响因子:0.983 )

ISSN: 0254-4059

年卷期: 2010 年 28 卷 1 期

页码:

收录情况: SCI

摘要: Retention efficiencies (RE) of scallop (Chlamys farreri), oyster (Crassostrea gigas) and mussel (Mytilus edulis) in a flow-through system were measured to understand the short-term response to various particle and organic matter concentrations. By comparing the RE of C. farreri with that of C. gigas and M. edulis, we gained further knowledge on the feeding physiological characteristics of C. farreri and ascertained the possible cause of high summer mortalities of this species. The experimental feeding conditions included natural differences in the abundance and composition of suspended seston, as well as conditions in which seston abundance and composition were manipulated by adding natural silt or cultured microalgae. The results show that in natural sea water, the minimum particle size for maximal retention in M. edulis, C. gigas and C. farreri was approximately 4, 6, and 8 mu m, respectively; the RE of 2-mu m (equivalent spherical diameter) particles was 17%, 19%, and 8%, respectively; and the relative standardized RE was 58%, 49%, and 18%, respectively. In C. gigas and M. edulis, the minimal particle size for maximal retention did not change with food quality (organic content). C. farreri was more sensitive to fluctuations in particle concentration and organic content. With particle concentration increase, the minimal particle size for maximal retention in scallop shifted to large particles and the RE for 2-mu m particle decreased from 8% in natural seawater to 1.6%-6% in silt-enriched groups. With organic content increase, the minimal particle size for maximal retention shifted from 8 to 5 mu m in natural seawater. Variation in RE of C. farreri with food conditions and the relationship between lower RE and smaller particle size may hamper C. farreri from food taking due to the decrease in the size distribution of phytoplankton in Sungo Bay.

  • 相关文献

[1]Emerging and endemic types of Ostreid herpesvirus 1 were detected in bivalves in China. Bai, Changming,Wang, Chongming,Xia, Junyang,Zhang, Shuai,Huang, Jie,Bai, Changming,Wang, Chongming,Huang, Jie,Sun, Hailin.

[2]Assessment of the local environmental impact of intensive marine shellfish and seaweed farming-Application of the MOM system in the Sungo Bay, China. Zhang, Jihong,Fang, Jianguang,Wang, Wei,Jiang, Zengjie,Zhang, Jihong,Fang, Jianguang,Wang, Wei,Jiang, Zengjie,Hansen, Pia Kupka.

[3]Growth and food sources of Pacific oyster Crassostrea gigas integrated culture with Sea bass Lateolabrax japonicus in Ailian Bay, China. Jiang, Zengjie,Fang, Jianguang,Mao, Yuze,Wang, Guanghua.

[4]Norovirus contamination and the glycosphingolipid biosynthesis pathway in Pacific oyster: A transcriptomics study. Ma, Liping,Su, Laijin,Liu, Hui,Zhao, Feng,Zhou, Deqing,Ma, Liping,Duan, Delin.

[5]Assortative fertilization in Chlamys farreri and Patinopecten yessoensis and its implication in scallop hybridization. Lu, Zhengming,Yang, Aiguo,Wang, Qingyin,Liu, Zhihong,Zhou, Liqing. 2006

[6]Bioinformatics analysis of hemocyte miRNAs of scallop Chlamys farreri against acute viral necrobiotic virus (AVNV). Chen, Guofu,Zhang, Chunyun,Jiang, Fengjuan,Wang, Yuanyuan,Xu, Zhong,Wang, Chongming. 2014

[7]A novel serine protease with clip domain from scallop Chlamys farreri. Zhu, Ling,Song, Linsheng,Zhao, Jiangmin,Li, Chenghua,Xu, Wei,Zhu, Ling,Mao, Yuze. 2008

[8]Comparative transcriptomics reveals genes involved in metabolic and immune pathways in the digestive gland of scallop Chlamys farreri following cadmium exposure. Zhang Hui,Zhai Yuxiu,Yao Lin,Jiang Yanhua,Li Fengling,Zhang Hui,Zhai Yuxiu,Yao Lin,Jiang Yanhua,Li Fengling,Zhang Hui,Zhai Yuxiu,Yao Lin,Jiang Yanhua,Li Fengling. 2017

[9]Discovery of genes associated with cadmium accumulation from gill of scallop Chlamys farreri based on high-throughput sequencing. Zhang, Hui,Zhai, Yuxiu,Yao, Lin,Jiang, Yanhua,Li, Fengling,Zhang, Hui,Zhai, Yuxiu,Yao, Lin,Jiang, Yanhua,Li, Fengling,Zhang, Hui,Zhai, Yuxiu,Yao, Lin,Jiang, Yanhua,Li, Fengling.

[10]Carbon dioxide fixation by the seaweed Gracilaria lemaneiformis in integrated multi-trophic aquaculture with the scallop Chlamys farreri in Sanggou Bay, China. Han, Tingting,Han, Tingting,Han, Tingting,Jiang, Zengjie,Fang, Jianguang,Zhang, Jihong,Mao, Yuze,Zou, Jian,Huang, Yao,Wang, Dongzhe,Huang, Yao,Wang, Dongzhe.

[11]Molecular characterization and immune response expression of the QM gene from the scallop Chlamys farreri. Chen, Guofu,Zhang, Chunyun,Wang, Yue,Wang, Yuanyuan,Guo, Changlu,Wang, Chongming.

[12]Primary culture of Zhikong scallop Chlamys farreri hemocytes as an in vitro model for studying host-pathogen interactions. Ji, Aichang,Li, Xueyu,Fang, Sha,Qin, Zhenkui,Zhang, Zhifeng,Bai, Changming,Wang, Chongming.

[13]The effects of Zhikong scallop (Chlamys farreri) on the microbial food web in a phosphorus-deficient mariculture system in Sanggou Bay, China. Lu, Jiachang,Lu, Jiachang,Huang, Lingfeng,Xiao, Tian,Zhang, Wuchang,Jiang, Zengjie.

[14]Size fraction of phytoplankton and the contribution of natural plankton to the carbon source of Zhikong scallop Chlamys farreri in mariculture ecosystem of the Sanggou Bay. Jiang Zengjie,Du Meirong,Fang Jinghui,Gao Yaping,Li Jiaqi,Fang Jianguang,Jiang Zengjie,Fang Jianguang,Zhao Li. 2017

[15]A preliminary study of differentially expressed genes of the scallop Chlamys farreri against acute viral necrobiotic virus (AVNV). Chen, Guofu,Wang, Chenchao,Zhang, Chunyun,Wang, Yuanyuan,Xu, Zhong,Wang, Chongming. 2013

[16]Physiological and biochemical responses of Zhikong scallop, Chlamys farreri, to different thermal stressors. Jiang, Weiwei,Jiang, Weiwei,Jiang, Weiwei,Jiang, Zengjie,Du, Meirong,Mao, Yuze,Li, Jiaqi,Fang, Jinghui,Lv, Xuning,Xue, Suyan,Wang, Wei,Zhang, Jihong,Fang, Jianguang,Jiang, Zengjie,Zhang, Jihong,Fang, Jianguang,Zhang, Yuan.

[17]Modelling the effect of food depletion on scallop growth in Sungo Bay (China). Bacher, C,Grant, J,Hawkins, AJS,Fang, JG,Zhu, MY,Besnard, M.

[18]Identification and characterization of a novel calreticulin involved in the immune response of the Zhikong scallop, Chlamys farreri. Wang, Guanghua,Zhu, Dongfa,Wang, Guanghua,Yang, Ning,Zhang, Min,Jiang, Zengjie,Jiang, Zengjie.

作者其他论文 更多>>