The Effects of Accompanying Ryegrass on Bayberry Trees by Change of Soil Property, Rhizosphere Microbial Community Structure, and Metabolites
文献类型: 外文期刊
作者: Li, Changxin 1 ; Li, Gang 2 ; Qi, Xingjiang 2 ; Yu, Zheping 2 ; Abdallah, Yasmine 3 ; Ogunyemi, Solabomi Olaitan 3 ; Zhang, Shuwen 2 ; Ren, Haiying 2 ; Mohany, Mohamed 5 ; Al-Rejaie, Salim S. 5 ; Li, Bin 3 ; Liu, Erming 1 ;
作者机构: 1.Hunan Agr Univ, Coll Plant Protect, Changsha 410128, Peoples R China
2.Zhejiang Acad Agr Sci, Inst Hort, State Key Lab Managing Biot & Chem Treats Qual & S, Hangzhou 310021, Peoples R China
3.Zhejiang Univ, Inst Biotechnol, Hangzhou 310058, Peoples R China
4.Minia Univ, Fac Agr, Plant Pathol Dept, Elminya 61519, Egypt
5.King Saud Univ, Coll Pharm, Dept Pharmacol & Toxicol, POB 55760, Riyadh 55760, Saudi Arabia
关键词: bayberry; accompanying ryegrass; soil properties; microbial community; metabolites
期刊名称:PLANTS-BASEL ( 影响因子:4.5; 五年影响因子:4.8 )
ISSN:
年卷期: 2023 年 12 卷 21 期
页码:
收录情况: SCI
摘要: As a subtropical and tropical tree, bayberry (Myrica rubra) is an important fruit tree grown commercially in southern China. Interestingly, our studies found that the fruit quality of bayberry with accompanying ryegrass was significantly improved, but its mechanism remains unclear. The aim of this study was to explore the mechanism of accompanying ryegrass on the beneficial effect of the fruit quality of bayberry by measuring the vegetative growth parameters, fruit parameters with economic impact, physical and chemical properties of rhizosphere soil, microbial community structure, and metabolites of the bayberry with/without ryegrass. Notably, the results revealed a significant difference between bayberry trees with and without accompanying ryegrass in fruit quality parameters, soil physical and chemical properties, microbial community structure, and metabolites. Compared with the control without accompanying ryegrass, the planting of ryegrass increased the titratable sugar, vitamin C, and titratable flavonoid contents of bayberry fruits by 2.26%, 28.45%, and 25.00%, respectively, and decreased the titratable acid contents by 9.04%. Furthermore, based on 16S and ITS amplicon sequencing of soil microflora, the accompanying ryegrass caused a 12.47% increment in Acidobacteriota while a 30.04% reduction in Actinobacteria was recorded, respectively, when compared with the bayberry trees without ryegrass. Redundancy discriminant analysis of microbial communities and soil properties indicated that the main variables of the bacterial community included available nitrogen, available phosphorus, exchangeable aluminum, and available kalium, while the main variables of the fungal community included exchangeable aluminum, available phosphorus, available kalium, and pH. In addition, the change in microbial community structure was justified by the high correlation analysis between microorganisms and secondary metabolites. Indeed, GC-MS metabolomics analysis showed that planting ryegrass caused a 3.83%-144.36% increase in 19 metabolites such as 1,3-Dipentyl-heptabarbital and carbonic acid 1, respectively, and a 23.78%-51.79% reduction of 5 metabolites compared to the bayberry trees without the accompanying ryegrass. Overall, the results revealed the significant change caused by the planting of ryegrass in the physical and chemical properties, microbiota, and secondary metabolites of the bayberry rhizosphere soils, which provides a new insight for the ecological improvement of bayberry.
- 相关文献
作者其他论文 更多>>
-
Bio-formulated chitosan nanoparticles enhance disease resistance against rice blast by physiomorphic, transcriptional, and microbiome modulation of rice (Oryza sativa L.)
作者:Hafeez, Rahila;Guo, Junning;Ahmed, Temoor;Jiang, Hubiao;Ibrahim, Ezzeldin;An, Qianli;Li, Bin;Ahmed, Temoor;Ahmed, Temoor;Raza, Mubashar;Shahid, Muhammad;Wang, Yanli;Wang, Jiaoyu;Yan, Chengqi;White, Jason C.
关键词:Chitosan; Nanoparticles; Sustainable agriculture; Microbiome; Rice blast; Magnaporthe oryzae
-
Metagenomic and biochemical analyses reveal the potential of silicon to alleviate arsenic toxicity in rice (Oryza sativa L.)
作者:Ahmed, Temoor;Guo, Junning;Lv, Luqiong;Li, Bin;Ahmed, Temoor;Qi, Xingjiang;Ahmed, Temoor;Noman, Muhammad;Manzoor, Natasha
关键词:Arsenic; Antioxidants; Microbiome; Rice; Silicon
-
Differential effects of winter cold stress on soil bacterial communities, metabolites, and physicochemical properties in two varieties of Tetrastigma hemsleyanum Diels & Gilg in reclaimed land
作者:Li, Xuqing;Ren, Xiaoxu;Ruan, Songlin;Yan, Jianli;Su, Yao;Zhou, Xiang;Wang, Yu;Li, Bin;Guo, Kai
关键词:Tetrastigma hemsleyanum; Diels & Gilg (TDG); winter cold stress; reclaimed land; 16S rRNA; soil bacterial communities; soil metabolites; soil properties
-
Ancient bayberry increased stress resistance by enriching tissue-specific microbiome and metabolites
作者:Li, Gang;Ren, Haiying;Qi, Xingjiang;Han, Hao;Ding, Xiangyang;Sun, Li;Wang, Zhenshuo;Wang, Qi;Hafeez, Rahila;Li, Bin
关键词:
-
Comparative Morpho-Physiological, Biochemical, and Gene Expressional Analyses Uncover Mechanisms of Waterlogging Tolerance in Two Soybean Introgression Lines
作者:Sharmin, Ripa Akter;Bhuiyan, Mashiur Rahman;Kong, Keke;Yu, Zheping;Zhang, Chunting;Zhao, Tuanjie;Sharmin, Ripa Akter;Karikari, Benjamin;Karikari, Benjamin;Yu, Zheping
关键词:soybean; waterlogging; morphological difference; antioxidant activity; gene expression
-
Toxicologic effect and transcriptome analysis for sub-chronic exposure to carbendazim, prochloraz, and their combination on the liver of mice
作者:Zhang, Shuwen;Sun, Li;Yu, Zheping;Liang, Senmiao;Ren, Haiying;Zheng, Xiliang;Qi, Xingjiang;Zhang, Shuwen;Luo, Ting;Wang, Dou;Zhao, Yao;Luo, Ting;Wang, Dou;Zhao, Yao;Weng, You;Jin, Yuanxiang;Qi, Xingjiang
关键词:Transcriptome; Carbendazim; Prochloraz; Hepatotoxicity; Mice
-
Quantum dots: next shift to combat plant diseases
作者:Ahmed, Temoor;Li, Bin;Ahmed, Temoor;Ahmed, Temoor;Noman, Muhammad;White, Jason C.;Ma, Chuanxin;Wang, Qi
关键词: