Developing universal classification models for the detection of early decayed citrus by structured-illumination reflectance imaging coupling with deep learning methods
文献类型: 外文期刊
作者: Cai, Zhonglei 1 ; Sun, Chanjun 2 ; Zhang, Hailiang 4 ; Zhang, Yizhi 4 ; Li, Jiangbo 1 ;
作者机构: 1.Beijing Acad Agr & Forestry Sci, Intelligent Equipment Res Ctr, Beijing 100097, Peoples R China
2.Jiangsu Univ, Dept Stomatol, Affiliated Hosp, Zhenjiang 212001, Jiangsu, Peoples R China
3.ShiHeZi Univ, Coll Mech & Elect Engn, Shihezi, Peoples R China
4.East China Jiaotong Univ, Coll Elect & Automat Engn, Nanchang 330013, Peoples R China
5.Natl Engn Res Ctr Informat Technol Agr, Beijing, Peoples R China
关键词: Citrus; Early detection; Image processing; Universal classification model; Deep learning
期刊名称:POSTHARVEST BIOLOGY AND TECHNOLOGY ( 影响因子:7.0; 五年影响因子:6.9 )
ISSN: 0925-5214
年卷期: 2024 年 210 卷
页码:
收录情况: SCI
摘要: Early detection of decay caused by fungal infection in citrus fruit is a major challenge for the citrus industry, as the decayed area is almost invisible on the surface of fruit. This study constructed a new detection system for structural illumination imaging combined with light-emitting diode (LED) lamp and a monochrome camera. The direct component (DC) and alternating component (AC) images were recovered by demodulating three phaseshifting pattern images under the spatial frequency of 0.25 cycles mm(--1). Compared with the DC image, the decayed area can be clearly displayed in the AC image and ratio image (i.e. AC/DC). For independent models, the classification accuracy of the decayed oranges and sugar mandarins reached 92.5% and 95.0% by combining RT images with convolutional neural network (CNN) method, respectively. However, it is time-consuming and labor-intensive to construct different models to predict the corresponding citrus variety. Thus, this study also explored the feasibility of establishing the universal classification model suitable for various citrus fruit. The classification performance of partial least square discriminant analysis and CNN models was evaluated and compared. Among all universal models, the CNN model exhibited superior performance with classification accuracies of 95.0% for independent test set including two varieties of citrus fruit (orange and sugar mandarin). For four types of citrus (orange, sugar mandarin, dekopon and Nanfeng sweet mandarin), the overall classification accuracy of the universal model was 90.6%. This study demonstrated that different varieties of early decayed citrus can be effectively identified by constructing a universal CNN model combined with structured-illumination reflectance imaging technology.
- 相关文献
作者其他论文 更多>>
-
Determination of soluble solids content of multiple varieties of tomatoes by full transmission visible-near infrared spectroscopy
作者:Li, Sheng;Yang, Xuhai;Zhang, Qian;Li, Sheng;Li, Jiangbo;Wang, Qingyan;Shi, Ruiyao;Li, Sheng;Yang, Xuhai;Zhang, Qian;Li, Sheng;Yang, Xuhai;Zhang, Qian;Li, Sheng;Yang, Xuhai;Zhang, Qian
关键词:tomato; soluble solids content; online detection; full transmission; quantitative analysis model
-
Fast detection of the early decay in oranges using visible-LED structured- illumination imaging combined with spiral phase transform and feature-based classification model
作者:Cai, Zhonglei;Zhang, Junyi;Sun, Chanjun;Zhang, Yizhi;Shi, Ruiyao;Zhang, Junyi;Li, Jiangbo;Zhang, Yizhi;Zhang, Hailiang;Li, Jiangbo
关键词:oranges; early decay detection; structured-illumination imaging; spiral phase transform; classification model
-
Navigation line extraction algorithm for corn spraying robot based on YOLOv8s-CornNet
作者:Guo, Peiliang;Diao, Zhihua;Ma, Shushuai;He, Zhendong;Zhao, Suna;Zhao, Chunjiang;Li, Jiangbo;Zhang, Ruirui;Yang, Ranbing;Zhang, Baohua
关键词:agricultural robotics; computer vision; deep learning; navigation line extraction; network lightweight
-
Online detection of lycopene content in the two cultivars of tomatoes by multi-point full transmission Vis-NIR spectroscopy
作者:Li, Sheng;Wang, Qingyan;Shi, Ruiyao;Li, Jiangbo;Li, Sheng;Yang, Xuhai;Zhang, Qian
关键词:Tomato quality; Nondestructive evaluation; Chemometrics; Least angle regression; Model optimization
-
Detection of early decayed oranges by using hyperspectral transmittance imaging and visual coding techniques coupled with an improved deep learning model
作者:Cai, Letian;Zhang, Yizhi;Shi, Ruiyao;Li, Xuetong;Li, Jiangbo;Cai, Letian;Zhang, Junyi;Diao, Zhihua
关键词:Citrus decay detection; Sample expansion; Spectral visual encoding; Improved deep learning; Model optimization
-
Identification of early decayed oranges using structured-illumination reflectance imaging coupled with fast demodulation and improved image processing algorithms
作者:Li, Jiangbo;Lu, Yuzhen;Lu, Renfu
关键词:Citrus decay; Defect segmentation; Brightness transformation; Image enhancement; Classification
-
Fast Three-Dimensional Profilometry with Large Depth of Field
作者:Zhang, Wei;Han, Yu;Zhang, Manru;Zhu, Jiongguang;Li, Jiangbo
关键词:three-dimensional profilometry; large depth of field; time-domain Gaussian fitting; neural network