Influence of Nitrogen Applications during Grain-Filling Stage on Rice (Oryza sativa L.) Yield and Grain Quality under High Temperature
文献类型: 外文期刊
作者: Dou, Zhi 1 ; Zhou, Yicheng 4 ; Zhang, Yaoyuan 3 ; Guo, Wei 3 ; Xu, Qiang 2 ; Gao, Hui 1 ;
作者机构: 1.Yangzhou Univ, Jiangsu Co Innovat Ctr Modern Prod Technol Grain C, Yangzhou 225009, Peoples R China
2.Yangzhou Univ, Jiangsu Key Lab Crop Genet & Physiol, Agr Coll, Yangzhou 225009, Peoples R China
3.Yangzhou Univ, Res Inst Rice Ind Engn Technol, Yangzhou 225009, Peoples R China
4.Shanghai Acad Agr Sci, Inst Agr Sci & Technol Informat, Shanghai 201403, Peoples R China
关键词: rice (Oryza sativa L.); high temperature during grain filling; nitrogen application at heading; yield; leaf photosynthesis; grain quality
期刊名称:AGRONOMY-BASEL ( 影响因子:3.7; 五年影响因子:4.0 )
ISSN:
年卷期: 2024 年 14 卷 1 期
页码:
收录情况: SCI
摘要: High temperature frequently occurs during rice's early grain-filling period in the south of China, negatively affecting rice yield and quality and posing a major threat to local rice production. This experiment researched the influence of 3.5 C-degrees warming during the first 20 grain-filling days on rice yield and quality and emphatically investigated the effects of the low-broadcast nitrogen fertilizer application level (LBN), high-broadcast nitrogen fertilizer application level (HBN) and foliar nitrogen fertilizer application (FN) at heading on the rice organ temperature, leaf photosynthesis, chlorophyll fluorescence, yield and grain quality, pasting and thermal properties under high temperature in 2020 and 2022, with a widely planted japonica rice variety, "Wuyunjing31", in order to explore the practical mitigation measures for reducing the adverse impact of high temperature on rice productivity. The results showed that high temperatures during grain filling increased the rice plant temperature, damaged the chlorophyll fluorescence system and decreased the net photosynthesis rate. This led to a decline in the seed-setting rate and grain weight, resulting in a 7.0% and 13.9% yield loss in 2020 and 2022, respectively. In addition, high temperature caused a decline in the head rice rate and an increase in chalk occurrence and pasting temperature, thereby deteriorating rice grain quality. Under high temperatures, HBN enhanced the rice yield by 3.6% and 13.0% in 2020 and 2022, respectively, while FN enhanced the rice yield by 11.5% in 2022. The increase in yield was linked to the increased seed-setting rate and 1000-grain weight. LBN did not significantly affect the rice yield under high temperatures. The positive effects of nitrogen fertilizer measures on rice yield were associated with their role in lowering plant temperature and protection against the damage to the chlorophyll fluorescence system. All three nitrogen application measures generally improved rice milling quality and appearance quality under high temperature, with HBN generally showing the greatest impact. Under high temperature, LBN and FN tended to make the texture of cooked rice softer due to the decreased consistency, retrogradation enthalpy and retrogradation percentage, and this was closely associated with the decline in amylose content. In summary, nitrogen supplementation at the heading could efficiently mitigate the adverse impact of high temperature during the early grain-filling period on rice yield and quality.
- 相关文献
作者其他论文 更多>>
-
Development of an RPA-based CRISPR/Cas12a assay in combination with a lateral flow strip for rapid detection of toxigenic Fusarium verticillioides in maize
作者:Liang, Xiaoyan;Xi, Kaifei;Guo, Wei;Zhang, Xiu;Liu, Yang;Liang, Xiaoyan;Jijakli, M. Haissam
关键词:Fusarium verticillioides; Recombinase polymerase amplification (RPA); Cas12a; Lateral flow detection; Maize
-
Identification and genomic insights into a strain of Bacillus velezensis with phytopathogen-inhibiting and plant growth-promoting properties
作者:Liang, Xiaoyan;Ishfaq, Shumila;Guo, Wei;Zhou, Xueping;Yang, Xiuling;Liu, Yang;Liang, Xiaoyan;Jijakli, M. Haissam
关键词:Bacillus velezensis; Antifungal activity; Plant growth promotion; Rhizobacterium; Genomic analysis
-
Development and evaluation of a novel visual and rapid detection assay for toxigenic Fusarium graminearum in maize based on recombinase polymerase amplification and lateral flow analysis
作者:Liang, Xiaoyan;Haseeb, Hafiz Abdul;Tang, Tingting;Shan, Jihao;Guo, Wei;Zhang, Xiu;Yin, Bo;Liang, Xiaoyan;Haseeb, Hafiz Abdul
关键词:Fusarium graminearum; Recombinase polymerase amplification; Lateral flow dipstick; gao A gene; Maize