Discrimination of tea plant variety using in-situ multispectral imaging system and multi-feature analysis
文献类型: 外文期刊
作者: Cao, Qiong 1 ; Yang, Guijun 2 ; Wang, Fan 2 ; Chen, Longyue 2 ; Xu, Bo 2 ; Zhao, Chunjiang 1 ; Duan, Dandan 2 ; Jiang, Ping 1 ; Xu, Ze 3 ; Yang, Haibin 3 ;
作者机构: 1.Hunan Agr Univ, Coll Mech & Elect Engn, Changsha 410125, Hunan, Peoples R China
2.Beijing Acad Agr & Forestry Sci, Informat Technol Res Ctr, Beijing 10097, Peoples R China
3.Chongqing Acad Agr Sci, Tea Res Inst, Chongqing 400000, Peoples R China
4.Nongxin Technol Guangzhou Co Ltd, Guangzhou 511466, Peoples R China
关键词: Tea plant variety; Camellia sinensis L; Multispectral imaging; Multi -feature analysis; Discrimination
期刊名称:COMPUTERS AND ELECTRONICS IN AGRICULTURE ( 影响因子:6.757; 五年影响因子:6.817 )
ISSN: 0168-1699
年卷期: 2022 年 202 卷
页码:
收录情况: SCI
摘要: Discrimination of tea plant (Camellia sinensis L.) varieties is of significant value for the efficient management of cultivation and resources optimization of tea industry. Phenotypic and spectral characteristics of tea plants are important indicators for determining the quality of tea cultivars to a certain extent. However, few studies have used spectral image information to identify tea plant varieties. The aim of this research was the discrimination of 16 types of high-yield tea plant varieties using a multispectral camera. This methodology involved image registration, calibration, segmentation, information extraction, and data fusion. The hue (H), saturation (S), and value (V), texture information, and several spectral vegetation indices were acquired from the multispectral image of the tea plant canopy. The successive projection algorithm (SPA) was used to analyze the original parameters. Three classification methods were applied to tea plant variety discrimination: Bayes discriminant analysis (BDA), support vector machine (SVM), and extreme learning machine (ELM). The results indicated that SPA based on fusing data combined with the SVM classification model, achieved a feasible method to identify tea plant varieties. Additionally, the method achieved accuracy in the training, test, and validation sets, reaching 97.00%, 90.52%, and 88.67%, respectively. This study proposed a new perspective on multispectral image information as an identifier of tea plant varieties. The explored model will be helpful for the development of portable instruments for commercial applications in variety identification and phenotype recognition of tea plants.
- 相关文献
作者其他论文 更多>>
-
UssNet: a spatial self-awareness algorithm for wheat lodging area detection
作者:Zhang, Jun;Wu, Qiang;Duan, Fenghui;Liu, Cuiping;Xiong, Shuping;Ma, Xinming;Cheng, Jinpeng;Feng, Mingzheng;Dai, Li;Wang, Xiaochun;Yang, Hao;Yang, Guijun;Chang, Shenglong
关键词:Unmanned aerial vehicle; State space models; Wheat lodging area identification; Semantic segmentation
-
Recognition of maize seedling under weed disturbance using improved YOLOv5 algorithm
作者:Tang, Boyi;Zhao, Chunjiang;Tang, Boyi;Zhou, Jingping;Pan, Yuchun;Qu, Xuzhou;Cui, Yanglin;Liu, Chang;Li, Xuguang;Zhao, Chunjiang;Gu, Xiaohe;Li, Xuguang
关键词:Object detection; Maize seedlings; UAV RGB images; YOLOv5; Attention mechanism
-
Boosting Cost-Efficiency in Robotics: A Distributed Computing Approach for Harvesting Robots
作者:Xie, Feng;Xie, Feng;Li, Tao;Feng, Qingchun;Li, Tao;Feng, Qingchun;Chen, Liping;Zhao, Chunjiang;Zhao, Hui
关键词:5G network; computation allocation; edge computing; harvesting robot; visual system
-
A Comprehensive Evaluation of Monocular Depth Estimation Methods in Low-Altitude Forest Environment
作者:Jia, Jiwen;Kang, Junhua;Gao, Xiang;Zhang, Borui;Yang, Guijun;Chen, Lin;Yang, Guijun
关键词:monocular depth estimation; CNN; vision transformer; forest environment; comparative study
-
Genotyping Identification of Maize Based on Three-Dimensional Structural Phenotyping and Gaussian Fuzzy Clustering
作者:Xu, Bo;Zhao, Chunjiang;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao
关键词:tassel; 3D phenotyping; TreeQSM; genotyping; clustering
-
High-throughput phenotyping techniques for forage: Status, bottleneck, and challenges
作者:Cheng, Tao;Zhang, Dongyan;Cheng, Tao;Wang, Zhaoming;Zhang, Dongyan;Zhang, Gan;Yuan, Feng;Liu, Yaling;Wang, Tianyi;Ren, Weibo;Zhao, Chunjiang
关键词:Forage; High-throughput phenotyping; Precision identification; Sensors; Artificial intelligence; Efficient breeding
-
Estimation of Leaf Chlorophyll Content of Maize from Hyperspectral Data Using E2D-COS Feature Selection, Deep Neural Network, and Transfer Learning
作者:Chen, Riqiang;Feng, Haikuan;Hu, Haitang;Chen, Riqiang;Ren, Lipeng;Yang, Guijun;Cheng, Zhida;Zhao, Dan;Zhang, Chengjian;Feng, Haikuan;Hu, Haitang;Yang, Hao;Chen, Riqiang;Zhang, Chengjian;Ren, Lipeng;Feng, Haikuan
关键词:maize; chlorophyll; radiative transfer model; feature selection; transfer learning



