Quantitative Trait Locus Mapping Combined with RNA Sequencing Reveals the Molecular Basis of Seed Germination in Oilseed Rape
文献类型: 外文期刊
作者: Yu, Kunjiang 1 ; He, Yuqi 1 ; Li, Yuanhong 1 ; Li, Zhenhua 1 ; Zhang, Jiefu 2 ; Wang, Xiaodong 2 ; Tian, Entang 1 ;
作者机构: 1.Guizhou Univ, Coll Agr, Dept Agron, Guiyang 550025, Peoples R China
2.Jiangsu Acad Agr Sci, Inst Ind Crops, Minist Agr & Rural Affairs, Key Lab Cotton & Rapeseed, Nanjing 210014, Peoples R China
关键词: Brassica napus; seed germination; quantitative trait locus; transcriptome; molecular basis
期刊名称:BIOMOLECULES ( 影响因子:6.064; 五年影响因子:6.191 )
ISSN:
年卷期: 2021 年 11 卷 12 期
页码:
收录情况: SCI
摘要: Rapid and uniform seed germination improves mechanized oilseed rape production in modern agricultural cultivation practices. However, the molecular basis of seed germination is still unclear in Brassica napus. A population of recombined inbred lines of B. napus from a cross between the lower germination rate variety 'APL01' and the higher germination rate variety 'Holly' was used to study the genetics of seed germination using quantitative trait locus (QTL) mapping. A total of five QTLs for germination energy (GE) and six QTLs for germination percentage (GP) were detected across three seed lots, respectively. In addition, six epistatic interactions between the QTLs for GE and nine epistatic interactions between the QTLs for GP were detected. qGE.C3 for GE and qGP.C3 for GP were co-mapped to the 28.5-30.5 cM interval on C3, which was considered to be a novel major QTL regulating seed germination. Transcriptome analysis revealed that the differences in sugar, protein, lipid, amino acid, and DNA metabolism and the TCA cycle, electron transfer, and signal transduction potentially determined the higher germination rate of 'Holly' seeds. These results contribute to our knowledge about the molecular basis of seed germination in rapeseed.
- 相关文献
作者其他论文 更多>>
-
Optimized straw incorporation depth can improve the nitrogen uptake and yield of rapeseed by promoting fine root development
作者:Wang, Chunyun;Wang, Zongkai;Lou, Hongxiang;Wang, Xianling;Shao, Dongli;Tan, Xiaoqiang;Liu, Mengzhen;Wang, Bo;Kuai, Jie;Wang, Jing;Xu, Zhenghua;Zhou, Guangsheng;Zhao, Jie;Wang, Chunyun;Gao, Jianqin;Zhang, Jiefu
关键词:Straw incorporation; Rapeseed; Nitrogen; Root; Yield
-
A rare dominant allele DYSOC1 determines seed coat color and improves seed oil content in Brassica napus
作者:Li, Huaixin;Wu, Mingli;Yin, Yongtai;Xia, Yutian;Cheng, Xin;Chen, Kang;Yan, Shuxiang;Xiong, Yiyi;He, Jianjie;Fan, Shipeng;Ding, Yiran;Zhang, Libin;Jia, Haibo;Li, Maoteng;Chao, Hongbo;Yin, Yongtai;Wang, Xiaodong;Zhang, Libin;Zhang, Chunyu
关键词:
-
Optimized tillage regimes in a rice-oilseed rape rotation system enhance system productivity by delaying post-flowering senescence
作者:Wang, Chunyun;Wang, Zongkai;Lou, Hongxiang;Wang, Xianling;Tan, Xiaoqiang;Shao, Dongli;Liu, Mengzhen;Wang, Bo;Kuai, Jie;Wang, Jing;Xu, Zhenghua;Zhou, Guangsheng;Zhao, Jie;Wang, Chunyun;Gao, Jianqin;Zhang, Jiefu
关键词:Moderate deep tillage; Oilseed rape; Rice; Root; Yield
-
Integrating QTL mapping and GWAS to decipher the genetic mechanisms behind the calcium contents of Brassica napus shoots
作者:Xiang, Yanan;Wang, Xiaodong;Zhang, Jiefu;Xiang, Yanan;Chen, Feng;Shi, Rui;Yang, Tinghai;Zhang, Wei;Zhou, Xiaoying;Wang, Chunyun;Sun, Chengming;Fu, Sanxiong;Wang, Xiaodong;Zhang, Jiefu;Shen, Yue
关键词:
Brassica napus shoots; calcium concentration; QTL mapping; GWAS; candidate genes -
Ningza 182: A rapeseed variety with a moderately compact plant type, bred for high yield and high oil content
作者:Sun, Chengming;Zhou, Xiaoying;Wang, Chunyun;Chen, Feng;Zhang, Wei;Peng, Qi;Guo, Yue;Gao, Jianqin;Wang, Xiaodong;Hu, Maolong;Zhang, Jiefu;Fu, Sanxiong;Zhao, Hu
关键词:Rapeseed; High yield; High oil content; Branch angle
-
BnaGSK3-BnaIDD16 module negatively regulates branch angle in Brassica napus
作者:Wang, Xiaodong;Yu, Jun;Cai, Ying;Tang, Min;Zhang, Liang;Liu, Jinglin;Liu, Hongfang;Hua, Wei;Zheng, Ming;Wang, Xiaodong;Chen, Feng;Zhang, Jiefu;Terzaghi, William
关键词:
; brassinosteroid;Brassica napus BnaGSK3 ;BnaIDD16 ; branch angle -
Homoeologous exchanges contribute to branch angle variations in rapeseed: Insights from transcriptome, QTL-seq and gene functional analysis
作者:Sun, Chengming;Zhou, Xiaoying;Fu, Sanxiong;Wang, Xiaodong;Peng, Qi;Gao, Jianqin;Chen, Feng;Zhang, Wei;Hu, Maolong;Zhang, Jiefu;Wu, Jian;Liu, Huimin;Wang, Youping;Xue, Zhifei;Fu, Tingdong;Yi, Bin
关键词:Rapeseed; Branch angle; Homoeologous exchange; WGCNA; QTL-seq; WRKY40



