Prediction of maize cultivar yield based on machine learning algorithms for precise promotion and planting
文献类型: 外文期刊
作者: Han, Yanyun 1 ; Wang, Kaiyi 1 ; Yang, Feng 1 ; Pan, Shouhui 1 ; Liu, Zhongqiang 1 ; Zhang, Qiusi 1 ; Zhang, Qi 1 ;
作者机构: 1.Beijing Acad Agr & Forestry Sci, Informat Technol Res Ctr, Beijing, Peoples R China
2.Natl Engn Res Ctr Informat Technol Agr, Beijing, Peoples R China
关键词: Prediction of maize cultivar yield; Machine learning; Random forest; Levenberg - Marquardt neural network; Multilayer perceptron neural network; Assessment of varieties
期刊名称:AGRICULTURAL AND FOREST METEOROLOGY ( 影响因子:5.6; 五年影响因子:6.3 )
ISSN: 0168-1923
年卷期: 2024 年 355 卷
页码:
收录情况: SCI
摘要: This study proposed a model that utilized machine learning algorithms to predict the yield of maize (Zea mays L.) cultivars. This will enable the selection of good cultivars with high yields that are suitable for planting in specific areas, such as a district or county. The breeding value of the cultivars and 11 types of time-series meteorological variables were selected as the input parameters of the model. The yield was set as the output parameter of the model. Random forest (RF), Levenberg-Marquardt neural network, and multilayer perceptron neural network algorithms were used to construct the model. The results showed that the RF outperformed the other algorithms in predicting the yield of maize cultivars by achieving the maximum coefficient of determination (R2) of 0.77 and minimal root-mean-square error of 320.25 kg/acre, mean absolute error of 229.84 kg/acre, and mean absolute percentage error of 7.1%. The constructed model can be used to effectively predict the yield of specific varieties to enable the selection of good varieties in specific areas, such as a district or county. A prediction of the yield of a specific maize cultivar in a particular planting environment can have considerable value. It can facilitate the objective identification of better adapting cultivars among farmers and support the precise promotion and planting of cultivars.
- 相关文献
作者其他论文 更多>>
-
A Study of Maize Genotype-Environment Interaction Based on Deep K-Means Clustering Neural Network
作者:Bai, Longpeng;Bai, Longpeng;Wang, Kaiyi;Zhang, Qiusi;Zhang, Qi;Wang, Xiaofeng;Pan, Shouhui;He, Xuliang;Li, Ran;Zhang, Dongfeng;Han, Yanyun;Wang, Kaiyi;Pan, Shouhui;Zhang, Liyang;He, Xuliang;Li, Ran
关键词:small ecological region delineation; deep k-means clustering neural network; genotype by environment interaction
-
Hybrid Deep Learning Approaches for Improved Genomic Prediction in Crop Breeding
作者:Li, Ran;Zhang, Dongfeng;Han, Yanyun;Liu, Zhongqiang;Zhang, Qiusi;Zhang, Qi;Wang, Xiaofeng;Pan, Shouhui;Sun, Jiahao;Wang, Kaiyi;Li, Ran;Pan, Shouhui;Sun, Jiahao;Wang, Kaiyi
关键词:CNN; hybrid models; LSTM; phenotypic prediction; ResNet
-
Multi-Channel Graph Convolutional Network for Evaluating Innovation Capability Toward Sustainable Seed Enterprises
作者:Tang, Shanshan;Wang, Kaiyi;Wang, Kaiyi;Yang, Feng;Pan, Shouhui;Wang, Kaiyi;Yang, Feng;Pan, Shouhui
关键词:innovation capacity evaluation; graph neural network; multi-channel; seed enterprises sustainability
-
VMGP: A unified variational auto-encoder based multi-task model for multi-phenotype, multi-environment, and cross-population genomic selection in plants
作者:Zhao, Xiangyu;Li, Jinlong;Zhang, Dongfeng;Zhang, Qiusi;Liu, Zhongqiang;Wang, Kaiyi;Sun, Fuzhen;Tan, Changwei;Ma, Hongxiang;Zhao, Xiangyu;Wang, Kaiyi;Zhao, Xiangyu;Zhang, Dongfeng;Liu, Zhongqiang;Wang, Kaiyi
关键词:Genomic selection; Variational auto-encoder; Multi-task; Deep learning; Genomic prediction
-
The PeachSNP170K array facilitates insights into a large-scale population relatedness and genetic impacts on citrate content and flowering time
作者:Xu, Yaoguang;Yu, Yang;Qi, Xinpeng;Zhang, Qi;Guan, Jiantao;Zhang, Zhengquan;Wei, Jianhua;Xie, Hua
关键词:
-
Multi-view hypergraph networks incorporating interpretability analysis for predicting lodging in corn varieties
作者:Wang, Kaiyi;Yang, Feng;Zhao, Xiangyu;Liu, Zhongqiang;Zhang, Qiusi;Li, Jinlong;Zhang, Dongfeng;Bai, Wenqin;Wang, Shun;Zhang, Yong;Wang, Kaiyi;Yang, Feng;Zhao, Xiangyu;Liu, Zhongqiang;Zhang, Qiusi;Li, Jinlong;Zhang, Dongfeng
关键词:Corn lodging classification; Multi-view hypergraph network; Graph interpretability
-
Developing a comprehensive evaluation model of variety adaptability based on machine learning method
作者:Han, Yanyun;Wang, Kaiyi;Zhang, Qi;Yang, Feng;Pan, Shouhui;Liu, Zhongqiang;Zhang, Qiusi;Han, Yanyun;Wang, Kaiyi;Zhang, Qi;Yang, Feng;Pan, Shouhui;Liu, Zhongqiang;Zhang, Qiusi
关键词:Maize variety adaptability evaluation; Variety adaptability comprehensive evaluation index; Entropy weight method; Machine learning method



